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Abstract

Based upon our survey of the literature, software product
lines is a fertile research field for the application of formal
methods. Most computer scientists and software practition-
ers, including software product lines researchers, are not
exploiting the powerful tools and techniques available in
modern formal methods. This paper (i) summarizes the core
of modern applied formal methods, (ii) discusses software
product lines from a formal methods point-of-view, (iii) sur-
veys the application of formal methods to software product
lines research, and, most importantly, (iv) highlights key re-
search opportunities and challenges for joint work between
formal methods and software product lines researchers.

1 Introduction

Applying mathematics in software development is today
known as “Formal Methods.” It has a long tradition in Com-
puter Science—especially given that the early decades of
Computer Science would today be known as formal meth-
ods. A notable example is the early work of Floyd and
Hoare in the 1960s that resulted in what is called Hoare
logic [15] today, which is a means of connecting program
code and its logic specifications. Another common exam-
ple is specification languages, such as Z or VDM [27],
that are used to rigorously describe software-intensive sys-
tems. This year’s Turing Award winners also work in formal
methods—they invented model checking, which is used to
reason about the correctness of hardware circuits and soft-
ware systems.

Although, compared to Formal Methods (FM), the re-
search on Software Product Lines (SPL) [9] is a younger
and developing field, it has roots in many earlier software
engineering areas. For instance, ideas such as mass pro-
duced software components [24], software families [28],
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software reuse [19], domain engineering, domain-specific
software architectures [26], and feature modeling [22] have
influenced SPL research or provide techniques used in SPL
approaches.

So what insights do we gain if we consider these two
fields, SPL and FM, in conjunction? Many of the challenges
brought up by SPL research and practice can be addressed
by techniques available in FM—and in part that is already
happening. However, we believe that there is still great po-
tential to make even better use of these opportunities. First,
there is a whole spectrum of standard FM techniques with
software tools ready to be used. SPL researchers should be
aware of this “toolkit”. Second, there are challenges still
waiting to be picked and solved. FM researchers should
know about these questions waiting to be answered.

Consequently, with this article we focus on the use
of of formal methods in the domain of Software Product
Lines (SPL). We strive to both raise awareness for available
techniques and identify opportunities for further research.

This article brings several contributions: (i) it provides
a snapshot of modern formal methods, particularly with re-
spect to the most useful, tool-supported methods, (ii) it sum-
marizes some facets of SPL from an FM point-of-view, (iii)
it is a survey of the current use of FM in SPL, and (iv) it
highlights opportunities and challenges in SPL research for
the application of FM.

Hence, a FM reader will find opportunities for research
within the area of SPL, and an SPL reader will find hints
and guidelines that will help him to chose the appropriate
FM tool or technique for his particular problem.

2 Formal Methods Overview

There are several tomes, hundreds of pages in length,
that summarize formal methods [18]. Thus, any summary
of modern applied formal methods of a few pages in length
does the field injustice. This section focuses instead upon



the key facets of applied formal methods—those subfields
of formal methods that have shown to be, in recent years,
the most useful and applicable, have the most supportive
and active communities, and have excellent tool support.

The steps of the general process of using FM comprise of
the following: 1) create a formal model of the studied sys-
tem, 2) formally express the desired properties of that sys-
tem, 3) attempt prove (show) that the model satisfies these
properties, and 4) if the proving process failed, analyze the
cause so the model can be amended or the property adjusted.

To create a formal model, one needs an underlying for-
mal system in which to build the model. Most readers will
be familiar with one or more formal languages used to de-
fine such models, but in the end, each of these languages’
semantics is expressed in a logic. Thus, the foundational
system used in FM are logics of various kinds. Conse-
quently, in these logics, one defines models, expresses prop-
erties about models, and then performs reasoning about the
model and its properties. In the following sections we dis-
cuss some of the most relevant (to the SPL researcher) log-
ics, reasoning techniques and tools, and standardized lan-
guages used to express models and properties in these logics
for such tools.

2.1 Logics

Logics are the languages of mathematics used to for-
mally capture the concepts about which one wishes to rea-
son. Often, FM practitioners are not writing in a logic
directly—rather they are using a language tailored for the
particular domain. Nevertheless, it is some form of logic
that eventually formalizes the semantics of such a language.

There are two main properties of a logic that determine
its suitability for a particular problem. One property is its
expressiveness, i.e., which concepts are expressible in that
logic and how easily such is done. A second property is the
difficulty of constructing proofs for statements in that logic.

Propositional logic is a logic with two-values for each
variable!, true and false, and the formulas are typically ex-
pressed using Boolean connectives (V, A, etc.) and nega-
tion (—). Propositional logic is decidable, meaning that
there exists an algorithm that decides whether a given for-
mula is a tautology (evaluates to true under any valuation
of variables, also known as being valid) or not. Neverthe-
less, this problem is a co-NP complete problem for CNF
(conjunctive normal form) formulas; dually deciding CNF
formula’s satisfiability is NP-complete.

First-order logics (FOL) are propositional logics embel-
lished with quantifiers used to express things such as “mul-

'Many other useful logics exist that have more than two truth values,
including several three-valued logics (with a third truth value of unknown),
a bevy of many-valued logics (with either a finite, infinite and enumerable,
or infinite and non-enumerable number of truth values), temporal logics
and logics of causality, fuzzy logics, etc.

tiplication by 0 yields 0"—-(Vz)(0 *x z = 2 % 0 = 0). FOL
are (in the general case) semi-decidable, meaning that there
exists an algorithm that, for a given formula, terminates if
that formula is valid. But, in addition, there is no algorithm
that for any formula terminates and determines whether that
formula is valid or not (a direct result of Godel’s incom-
pleteness theorems).

Higher-order logics (HOL) [31], of which second-order
logics are a common variant, enable quantification over
functions and predicates, rather than just over variables.

Even though the general FOL is only semi-decidable,
there exist fragments of FOL that are decidable. An exem-
plar of such fragment is Presburger arithmetic—arithmetic
without multiplication. This led to the development of al-
gorithms and tools for deciding the validity of formulas in
these fragments, see Sections 2.2, 2.3 for more details.

A variety of logics have been introduced to facilitate
writing expressions in different certain domains. For exam-
ple, the aforementioned temporal logics are logics special-
ized to express properties of processes evolving over time.

2.2 Reasoning

Logics are used to describe the objects about which one
wants to reason. The reasoning itself is an attempt to con-
struct a proof of the desired claim. The term proof has a
rather wide scope and for the purpose of this text we just
assume that a proof is either a set of steps that adhere to the
pertaining calculus or it is an exhaustive enumeration of all
the possible valuations.

There is a variety of options how a proof is constructed.
A traditional pen and paper approach offers freedom and
flexibility to the mathematician and it is a popular choice for
proofs attempted for the first time. The disadvantage is that
working by hand does not take advantage of tool support.

So how do tools help with proving? Generally speaking,
tools provide two functions: automation of the proving pro-
cess, and validation of the steps performed by the human.
Complementing the palette of logics, FM provide us with a
number of tools with the support of different logics, varying
in the degree of automation and time requirements, etc.

Table 1 provides an overview of some of the main tools
supporting reasoning. The following provides an overview
of several kinds of reliable, useful, popular tools that appear
in FM. Several concrete examples of these tools are also
provided, and nearly all of them are freely available online.

SAT solvers operate on propositional logic and attempt to
decide whether the given formula, typically in CNF, is sat-
isfiable or not. Due to the NP-completeness of satisfiability
of a CNF formula we are guaranteed termination, but the
resource requirements may be unwieldy. The good news
is that, in practice, SAT solvers are very capable of solv-
ing problems with thousands of free variables. Examples of



SAT solvers include CHAFF, MINISAT, SATZILLA?.

Finding a satisfying evaluation of a formula is a special
case of the Constraint Satisfaction Problem (CSP). CSP
is given as a set of domains and constraints on these do-
mains and we are interested in the states that satisfy all the
constraints. Constraint Satisfaction Optimization Problem
(CSOP) is an extension of CSP where we are interested
in states that apart from satisfying the constraints, maxi-
mize (resp. minimize) the so-called objective function. Con-
straint solvers are tools that answer queries about the given
CSPs or CSOPs. Examples of constraints solvers are JA-
CoP, MINION, VALCSP-.

Model checking is a fully automated technique targeting
properties of finite systems by the exhaustive (explicit or
symbolic) search through all possible executions of the sys-
tem. The modeled system is often described with a state
transition system, and the desired properties in a temporal
logic (LTL, CTL, etc.). The domain of search is finite but
very large. Examples include Bogor and SPIN.

Tools that decide the validity of formulas of decidable
fragments of FOL are typically referred to as SMT solvers
(SMT stands for satisfiability modulo theories). Popular
SMT solvers include Yices, CVC3, MathSAT*.

Fully automated tools that handle first-order formulas are
called automated theorem provers. As FOL is undecidable,
an automated theorem prover is not guaranteed to termi-
nate. Popular automated provers include CVC, Simplify,
Vampire, Yices, Z3.

Proof assistants (also known as proof checkers or some-
times logical frameworks) are tools that let the user deter-
mine the steps of the proof, while checking that these adhere
to the pertaining calculus. Moreover, they provide automa-
tion for certain types of steps. Proof assistants typically sup-
port higher-order languages and thus are very expressive.
Examples include Coq, HOL, Isabelle, PVS.

Finally, some tools are somewhere halfway between au-
tomated provers and interactive proof assistants. Many of
them support specialized logics, such as rewriting logic in
the case of Maude, or reasoning techniques, such as induc-
tion in FOL, in the case of ACL2.

Apart from reasoning tools, some programming lan-
guages are close to logic. Logic programming (e.g., Prolog)
enables expressing logic formulas as programs in a straight-
forward fashion.

2.3 Standardized Languages

Many of the input languages of the tools just discussed
have been de facto standardized. It is a very important
fact that a language has been standardized; such avoids tool

2 See the results of the SAT competition for more information.
3 See the results of the CSP Solver Competition for more information.
4 See the results of the SMT Competition for more information.

Tool category
SAT solvers
constraint solvers
model checkers

Logic

propositional logic

constraints over finite domains
temporal logic and state transi-
tion systems

SMT solvers decidable fragments of FOL
automated theo- | FOL

rem provers
proof assistants HOL

Table 1. Tools for Mechanized Reasoning.

“lock-in” and enables the use of multiple tools to solve (var-
ious different parts of) a problem. Here we provide several
important examples of such standardized languages.

Specification languages are languages used to describe
systems (hardware, software, business, etc.). They are used
to abstract away from the implementation details of the sys-
tem and reason about its overall properties. The languages
B, JML, VDM, Z are examples of popular specification lan-
guages with excellent tool support.

For automated reasoning tools, several regular competi-
tions expedited a widespread of standard problem formats.
In SAT solving, the most common format is the DIMACS
format, designed for the DIMACS Implementation Chal-
lenges and used for the aforementioned SAT competition.

Thousand Problems for Theorem Provers (TPTP) is a
competition and a set of benchmarks for first-order theorem
provers; this format is now widely supported.

The Satisfiability Modulo Theories (SMT) initiative fo-
cuses on automated reasoning for decidable fragments of
FOL. SMT provers are very popular and powerful, as the
logics supported by such provers are primarily useful in the
fields of hardware and program verification.

3 Software Product Lines

Some core concepts of software product lines are now
introduced. This overview is based on an ongoing survey of
SPL literature, however, here SPL concepts are described
from a FM point-of-view. By taking this fresh perspective,
specific SPL approaches are generalized using FM concepts
(e.g., as sets or functions). The foundation provided here fa-
cilitates a review of some approaches that apply FM in SPL
(Section 4) and the identification of several open research
challenges (Section 5).

3.1 Motivation: Economic production

The major motivation behind SPL is that, under certain
conditions, it is more efficient to treat a group of similar
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software systems as a whole, rather than handling each in-
dividual system on its own. In this sense Parnas defines
program families as

... sets of programs whose common properties
are so extensive that it is advantageous to study
the common properties of the programs before
analyzing individual members. [28]

To avail of these commonalities, SPL engineering ap-
plies techniques that were known before, e.g., software
reuse and software components. In contrast to other ap-
proaches, SPL engineering strives to achieve reuse in a
strategic, prescribed way and to use a managed set of fea-
tures satisfying the needs of a particular market segment [9].

Consequently, in comparison to Single System Engineer-
ing, SPL Engineering requires additional upfront invest-
ment to establish the product line (see @ in Figure 1). Ex-
amples of such investment include the definition of a prod-
uct line’s scope, the development of reusable assets, and the
creation of a production plan that describes how products
are derived.

2]

Lower costs
per product —

Costs

o

ngfler upfront { "',-
investment Lo

Number of products

Figure 1. Costs of SPL Engineering.

If this investment is to pay off, a sufficient number of
products and a lower costs per product is necessary to lever-
age the economy of scale (see @ in Figure 1).

Such an approach is applied to FM in SPL as well. For
instance, if a model analysis technique that optimizes prod-
uct derivation is created, the technique and its related tools
must be introduced to an organization @, but the marginal
costs of such an introduction is reduced by performing
product-related processes more efficiently @.

3.2 SPL Artifacts

To support the efficient execution of SPL processes with
FM, it helps if we first understand the types of artifacts used
in SPL and the relationships between these artifacts. Later
on, we will see how we can exploit these relationships with
FM, for instance by checking the conformance of one model
against constraints given in another model.

SPL engineering employs artifacts very similar to those
used in general software engineering like specifications,

models, and source code. However, SPL artifacts are differ-
ent and distinct in some ways. Some of these differentiating
aspects are summarized in Figure 2.

Problem-oriented Solution-oriented
Product-Line Product-Line
Artifact Artifact

Product Line

I 1

I T d
Problem-oriented T
Product Artifact 1 [~

Solution-oriented d
Product Artifact 1

Product

e
AN
Jat

Problem Space Solution Space

Figure 2. SPL Artifacts.

3.2.1 Product line vs. Product

SPL approaches distinguish between two levels of system
development: the product line and its products (see ver-
tical dimension in Figure 2). Often, there is one product
line artifact describing an aspect for the whole product line,
and many product-specific artifacts describing that aspect
of the individual products. For example, consider a feature
model with many product-specific feature configurations,
or a product line architecture (PLA) with many product-
specific architectures, based upon this PLA.

We see this introduction of an artifact that explicitly
describes an aspect (e.g., features or architecture) for the
whole software family as a major contribution of SPL En-
gineering. Such a product line artifact serves multiple pur-
poses: (i) it describes the products by modeling overall
structures and constraints, (ii) it provides guidance when
creating a product-specific instance, and (iii) it enables
conformance checking of instances with some given con-
straints.

3.2.2 Variability

As a direct consequence of the structure “one product line,
many products,” SPL engineering has to provide a means
to describe the commonalities and variability between dif-
ferent products (see the diagonal dimension in Figure 2).
This is, for instance, implemented by extending existing
modeling languages, or by introducing a separate variability
model that contains references to elements in other artifacts.

3.2.3 Mapping from Problem to Solution

Another dimension through which one categorizes and re-
lates SPL artifacts is seen in the distinction between prob-
lem and solution (see horizontal dimension in Figure 2).



An example of a problem-oriented SPL artifact is fea-
ture models, which describe each individual problem as a
combination of features; where a feature is ...

. a prominent or distinctive user-visible aspect,
quality, or characteristic of a software system or
system. [22]

On the other hand, an example of a solution-oriented ar-
tifact is architecture description languages (ADLs). Tradi-
tional ADLs now support variability, for example, by sup-
porting the description of multiple architectures [12].

Consequently, an interesting research area is product line
models that integrate both problem- and solution-oriented
aspects—fertile ground for further research. Section 4 pro-
vides several references to such models.

3.3 Interpretation from a FM Perspective
In the preceding section, relationships between SPL arti-

facts was discussed. Here, these relationships are examined
from a FM perspective (see Figure 3).

o O S50
o.alstTo g ©%) o
@ —
Problem space Solution space
@ valid problem @ invalid problem
or solution or solution

Figure 3. Product line concepts.

A problem space is the domain of problems under con-
sideration, and a solution space is the range of potential so-
lutions. These spaces determine the scopes of the problems
and solutions within a given domain, respectively.

For a particular product line, one needs to determine the
set of problems that the product line covers. These prob-
lems are referred to as the valid problems. In the context
of the preceding section, this determination corresponds to
a product-line artifact that defines a set of instances at the
product level.

Analogously, valid solutions that are realizable by the
product line must be identified. An example of a solution
space is a set of programs written in the C programming lan-
guage, and valid solutions in this context are exactly those
programs which compile.

Furthermore, to link the two domains, a mapping from
problems to solutions is necessary. This mapping, depicted
as arrows in Figure 3, determines which elements of the
solution space are solutions for a particular given problem.
Such a mapping is, for example, realized by a program gen-
erator that takes a feature configuration as input and pro-
duces a valid program as output.

3.4 Processes

Product development with a SPL encompasses numerous
processes and roles. Figure 4 offers a somewhat simplified
version thereof.

When establishing the product line, an expert develops a
problem-space model and the reusable assets.

The customer is then presented only with the view of
the problem space model, representing the set of available
products from which he or she may choose. By configura-
tion, the customer chooses a member of the problem space,
which in turn defines the desired properties of the product.
If the set of valid problems is large and has complex depen-
dencies between the configurable parts, this configuration
process may require interaction with the application expert.

Finally, the product itself must be assembled according
to the product description. As discussed earlier in Sec-
tion 3.1, the success of the product line hinges on this partic-
ular point since, if product assembling is not efficient, one
might just as well develop product by product. Hence, one
might say that the ‘holy grail’ for a product line is a fully
automated assembly.

— Data flow

@ Customer
Problem N
Description _ -
_~ " Application

Product Engineer
Assembly

Product

——= Involved in
O Process
[ Artefact

Domain | Problem Space
Engineer Model
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Reusable
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Figure 4. SPL Processes.

3.5 Properties of a Product Line

The mathematical point of view on a product line out-
lined in Section 3.3 enables us to explicitly point out the
desirable, resp. undesirable, properties of the relevant con-
cepts. This section discusses such properties and later Sec-
tion 4 demonstrates how various researchers have targeted
these properties with formal analyses.

First, we ask what are the desired, resp. undesired, prop-
erties of the mapping? On reflection, we have identified the
following properties of such mappings:

1. If a solution is classified as invalid, it must never be
derived. Hence, a valid problem must not be mapped
to an invalid solution. (Validity is preserved across the

mapping.)

2. We must have a solution for all problems under con-
sideration. Hence, each valid problem must have a so-
lution, and furthermore that solution must be mapped



to from that particular valid problem.
(The restriction of the mapping to the valid problems
must be total.)

3. If two problems are distinct, the solutions must be dis-
tinct as well. Hence, no two distinct problems may
map to the same solution. The violation of this prop-
erty is not as alarming as for the previous two proper-
ties, but still, the violation is worth exploring.

(The restriction of the mapping to the valid problems
must be injective.)

We do not prohibit mapping a problem to multiple so-
lutions (the mapping need not be a function), as leaving a
non-determinacy in a system’s description is a common and
useful practice in program/system specification.

Another important property of the (problem and solu-
tion) spaces is that none of them should be empty. Hence,
the product-line models that describe spaces must be consis-
tent. (Were they to be inconsistent, then any solution would
satisfy any problem.)

Finally, the absence of redundancies is a desirable prop-
erty of the individual models and the mappings between
them. For instance, for a given feature model, a feature that
cannot be selected into any product—a so-called dead fea-
ture—is redundant. Dead features must either be removed,
or the underlying constraints must be reconsidered.

4 Survey

This section summarizes some recent research that lies
within the intersection between FM and SPL. It is by no
means complete. Specific papers were chosen because they
highlight the clear and straightforward application of FM to
a variety of SPL problems.

4.1 Feature Models

To express the semantics of feature models in proposi-
tional logic is rather straightforward. Features are repre-
sented as propositional variables, and the semantics of a
feature model is a propositional formula, e.g., fi = fo
for feature fy requires fo. Thus, a feature configuration,
expressed as a variable valuation, conforms to the feature
model if and only if it satisfies the formula defined by the
feature model.

This approach is extensively studied by Schobbens et al.
[30]. In this work, they provide a survey of the variants
of FODA-like feature models, their semantics, investigates
their expressiveness, and studies the complexity of several
feature model analyses.

Jonge and Visser [13] propose the use of context-free
grammars for capturing the semantics of feature models.

Feature configurations conforming to a feature model are
defined as the sentences generated by the pertaining gram-
mar. This idea is extended by Batory [2] by combining
grammars and propositional logic.

Czarnecki et al. [10] also use context-free grammars to
capture the semantics of feature models. Their meta model
is more expressive than the feature models covered by the
aforementioned articles, as their meta model enables cardi-
nalities, similar to ER-multiplicities, and feature cloning.

Hofner et al. [16] take an algebraic approach to feature
modeling. In this approach, a product family is a set of sets
of features, and the language of algebra is used to abstract
from the sets. Dependencies, such as exclusion, are ex-
pressed as additional equalities. What makes this approach
interesting is that it enables to use multisets (sets with repe-
titions of an element, aka bags) instead of sets. This exten-
sion permits the modeling of feature models with cloning.
Even though this approach seems interesting, no other pub-
lications along this line of research are known.

In our own work [21] we use the proof assistant PVS to
reason in and about feature models. Thanks to the expres-
sive power of the PVS language and HOL, this approach
enables reasoning about the full bevy of feature models—
with cloning or attributes. Furthermore, it supports reason-
ing about feature modeling mechanisms, such as: “is this
operation a specialization?”.

4.2 Analyses

Section 3.5 introduced several desirable properties of a
product line (and the related models). This section discusses
the research focused on identifying the violation of some of
these properties.

Let us recall some of the recurring terminology. A fea-
ture model is consistent if and only if there is at least one
configuration permitted by the model. A dead feature is a
feature that cannot be selected into any configuration.

Probably the first documented analysis of a feature
model was done by Mannion who uses Prolog to check for
the consistency and the absence of dead features [23].

This line of research was followed by Batory [2] who
not only applies a SAT solver (see Section 2.2) to detect in-
consistencies of a feature model, but also to debug a feature
model, i.e., to test whether certain feature combinations that
are expected to be allowed, resp. disallowed, really are.

Along this line, Benavides et al. [7] apply constraint pro-
gramming to analyze feature models. Constraint program-
ming enables features to have attributes of finite domains.
Furthermore, one can ask a variety of queries, such as model
consistency, number of models, or to find a product with
certain properties (filtering).

For further reference, see a survey on the automated
analyses of feature models by Benavides et al. [6] or a set



of challenges for feature model analyses identified by Ba-
tory et al. [3].

The work of Sinz et al. [32] focuses on general prod-
uct configuration in the automotive industry, a domain that,
until recently, did not necessarily deal with software. How-
ever, this domain bares a strong resemblance to SPL, and
software-intensive subsystems are gaining importance.

The authors operate in a two tiered model: configuration
at the engineering stage and configuration at the manufac-
turing stage. The engineering stage is concerned with the
capabilities of the intended products. The manufacturing
stage needs to deal with things like availability of the indi-
vidual parts. The scope of intended products is expressed as
a set of rules, and several consistency criteria for these rules
are described. A SAT solver of their own making is used
which supports some specialized constructs useful for their
particular problem, e.g., choose{C operator’. This formal-
ism enables the assignment of time frames to the rules in
the manufacturing stage, and these time frames determine
when the pertaining rule is in effect.

An important part of consistency analysis is to provide
the source of an inconsistency, if one is found. Research
on this topic is still somewhat scarce, but the work of
Trinidad et al. [34] shows some promising results.

4.3 Aiding the Configuration Process

Once the feature model is expressed in a formal (logical)
representation, tool support assists the user during the con-
figuration process, inferring the consequences of the user-
made selection thus far (decision propagation).

In the case of feature selection, the consequences of the
user’s selection are other features that must be selected or
deselected. Batory applied a Logic Truth Maintenance Sys-
tem to implement such support [2]; the implementation is
part of the AHEAD tool suite [5] as the tool guidsl.

For further discussion on this topic, see Section 5.2.

4.4 Product Line Modeling

This section focus on approaches that model and analyze
the product line as a whole (see Figure 3).

Feature oriented programming (FOP) represents a line
of research where programs are composed on demand
from some specified features. Hence, in FOP, features are
mapped, in a 1-to-1 fashion, to pieces of program code [5].
In the FOP context, Batory and Geraci [4] specify rules for
the validity of component composition and attribute gram-
mars are used to implement the checks of these rules.

In the context of the FOP framework AHEAD [5],
Thaker et al. [33] use a SAT solver to validate that a feature

Schoosef (t1,..
most k outof £y, ..

., tn) evaluates to true if and only if at least [ and at
., tn, evaluate to true.

model does not allow feature combinations which result in
illegal code.

Similarly, Van der Storm proposes a model where fea-
tures are mapped to components with dependencies. Sub-
sequently, one validates whether any feature configurations
violate these dependencies [35].

Another example along this same line is work by Czar-
necki and Pietroszek [11] who use UML to describe both
the problem and the solution space. Additionally, they use
the Object Constraint Language (OCL) to specify proper-
ties of the valid solution space in order to show that a valid
problem will not be mapped to an invalid solution.

All of this summarized research are different variants for
detecting the aforementioned property: that a valid problem
must not be mapped to a invalid solution (Section 3.5).

Kumbang [1] is a framework, implemented as an Eclipse
plugin, that provides support for modeling in two-tiers—
features and components. A reasoning engine is used to
facilitate the configuration process.

In our own work [20], a generic formalism for reason-
ing about product line models is provided. This formal-
ism mathematically captures the idea illustrated by Figure 3.
Furthermore, it enables the formalization and study of sim-
ilar approaches that also deal with models of features and
their implementation.

We conclude this section with a reference to the domain
of program generation. Effectively, a program generator re-
alizes the mapping between the problem and solution space.
Huang et al. [17] use an automated theorem prover to verify
that a given template will only generate valid Java code (i.e.,
code that will compile, in their case). In our terminology,
this generation mechanism ensures that no valid problem is
mapped to an invalid solution.

4.5 Component Composition

The work of Blundell et al. [8] utilizes model-checking
in the SPL context. Components, modeled as state ma-
chines, correspond to individual features. Constraints on
the model are expressed using temporal logic (CTL). Fea-
ture composition corresponds to adding transitions between
the relevant state machines.

The work of Scheidemann [29] is somewhat more gen-
eral. The author presents algorithms for choosing a (mini-
mal) subset of all possible configurations to verify a whole
family. These algorithms exploit the fact that certain re-
quirements apply only to a subset of components.

S Recommendations and Challenges

This section provides several guidelines for those who
wish to employ FM in their research or engineering pro-



cesses. We use the marker [ to denote open research chal-
lenges in SPL via FM.

5.1 Model Analyses

As we have mentioned before, models are analyzed to
uncover undesired properties. One popular form of analysis
is what is known as sanity checking.

Figure 5 illustrates a potential procedure for such anal-
yses. We first have to interpret the initial model @, for in-
stance by translating f1 requires f5 as fi = fo. This yields
a formal model in the chosen logic @, that is represented in a
concrete syntax in a standardized format ©. Using this data
as input to an automated tool, the desired analysis results
are obtained @.

We will now provide guidelines for choosing the appro-
priate means (to perform such analyses) according to the
form of the model. A bulk of the SPL research focuses on
the feature models and so does this section. Nevertheless,
these guidelines apply to other types of models so long they
are expressible in the corresponding logic.

For the sake of brevity, we introduce the following no-
tation: Let M be a feature model then [M] is a formula
corresponding to M’s semantics. Additionally, we say that
a model is consistent if and only if the formula expressing
its semantics, i.e., [M], is satisfiable.

By model debugging we mean that we expect the model
to enable or disable certain specific configurations. For in-
stance, we expect that a feature model does not allow one to
select both a manual and an automatic gearshift in an auto-
mobile.

The procedure to verify such a requirement is to first
translate the requirement to its logical representations, say
a formula ¢, and then check for the satisfiability resp. un-
satisfiability of [M] A ¢. E.g., for the given example we
require that the following formula is unsatisfiable:

[M] A (manual A automatic) (1)

Recall that dead features are features that do not appear
in any product. Mathematically speaking, a feature repre-
sented by the variable f is dead in the model M if and only
if the following formula is unsatisfiable.

[MIAf 2)

For models expressible in propositional logic, as most
variants of FODA are, SAT solvers are a natural choice
for consistency checking and model debugging. To use a
SAT solver, one either chooses to export the problem into
the DIMACS format, or directly uses the solver’s program
interface. For instance, MINISAT provides such an inter-
face [14].

To determine whether a feature is dead, a SAT solver
is called repeatedly on formula 2 for each feature. We are

not aware of a documented, more efficient technique and
we believe that minimizing the number of calls to the SAT
solver to find dead features is a research challenge.

For models whose semantics is not propositional, but
which still have finite domains of values, constraint solvers
are a good choice. Using SMT solvers is also a possibility
and using such increases the expressiveness of constraints
on features and attributes. Nevertheless, we are unaware
of any research using SMT solvers in the feature modeling
domain.

Even thought there has been research in the semantics
of feature models that enable cloning of features [10, 16,
21], we are not aware of a semantics that is readily used
with automated tools. We believe that constraint solvers are
useful when there is no support for cloning arbitrary many
times, as the domain is still finite. For feature models where
a feature can be cloned arbitrary many times, more powerful
techniques are required.

As we can see, to solve problems that lead to satisfiabil-
ity is rather straightforward and off-the-shelf tools are use-
ful. However, there are problems that take into account all
the configurations of the model, such as counting the num-
ber of all configurations. Finding the number of valid con-
figurations does not necessarily uncover a problem (unless
the number is 0). However, this number is an important san-
ity check: if the number is too large, the constraints might
be too loose; if the number is too small, the constraints
might be too restrictive or too specific for the products de-
veloped so far. One can imagine other kinds of similar anal-
yses, such as an average price of all valid products.

Constraint solvers typically have the support for return-
ing all possible solutions. Once solutions are obtained, fur-
ther analysis can be performed. Naturally, this technique is
problematic once the set of solutions becomes unwieldy.

One way to store and build the whole set of configura-
tions for the propositional logic formulas are Binary Deci-
sion Diagrams (BDDs) [25]. BDDs are essentially efficient
representations of sets of satisfying valuation of a given for-
mula. Libraries with BDD support are easily accessible,
e.g., the JavaBDD library. BDDs, however, suffer from the
space-explosion problem. Moreover, BDDs are not readily
applicable to models whose semantics is not propositional.

Hence, we believe that there is utility in looking for ded-
icated algorithms for such analyses, like counting numbers
of configurations. We should note that recent advances in
the SAT community make counting the number of satisfy-
ing valuations for a propositional formula possible, includ-
ing estimates, see e.g., [36].

5.2 Configuration Process

During the configuration process firstly we want to make
sure that the user does not make decisions that violate the
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Figure 5. Data flow for model analysis.

feature model’s restrictions. Secondly, we would like to
help the user with making the decisions.

5.21 Completing a Configuration

Given a model M and a set of decisions expressed by the
formula ¢, the first question to ask is whether it is possible
to complete the configuration process while keeping these
decisions. That is a satisfiability problem of the formula
[M] A ¢ and hence, the recommendations for satisfiability
given above apply here as well.

A step further is to look for an actual configuration that
respects the decisions already made. In other words, we
wish to automatically complete a partial configuration. This
is desirable if, e.g., the customer expressed some parameters
for the configuration and is indifferent to the setting of the
rest of the features.

If we are looking for any completion of the given con-
figuration and we are using a constraint or SAT solver, the
query for satisfaction of [M] A ¢ is sufficient, as these types
of solvers also provide the actual solution.

The problem gets trickier if we are looking for a com-
pletion that is optimal in some sense, e.g., for the cheapest
solution. Here, SAT solvers typically would not help, even
though MINISAT+ (a modification of MINISAT) does al-
low for minimizing an expression. Nevertheless, most con-
straint solvers enable one to specify the so-called objective
function, a function that the solution should minimize/max-
imize (i.e., CSOP specification, recall Section 2.2).

5.2.2 Decision Automation

The previous subsection discussed how to complete a partial
configuration by a single call to a tool that provides all the
missing decisions. However, tools can also help the person
throughout an interactive configuration process by automat-
ically making necessitated decisions. Primarily, this means
1) preventing the user from making the decisions that are
no longer possible, as they would violate some constraint

2) automatically making the decisions that must be made if
the configuration process is to succeed.

In the propositional case, the points 1) and 2) collapse
into one as they both mean enforcing a particular value (frue
or false) on a certain variable. For instance, once a is se-
lected (set to true) in the presence of the constraint =(a A b),
b must be deselected (set to false).

In the case of variables with larger domains, 1) corre-
sponds to removing elements from a particular domain that
violates the model’s constraints and 2) corresponds to au-
tomatically selecting a value that is the only one left in the
particular domain.

As we have mentioned before (Section 4.3), a Logic
Truth Maintenance System is a natural choice for the propo-
sitional case, see e.g., Batory [2].

It is easy to see how 1) and 2) are implemented for at-
tributes with finite domains. In fact, constraint solvers con-
tain such decision propagation. Nevertheless, we are not
aware of a documented and available application of deci-
sion automation for non-propositional constraints.

6 Conclusions

By providing a comprehensive survey of the application
of FM in the software product line (SPL) literature, we have
shown that many formal methods approaches have been
adopted into the state-of-the-art techniques. Besides this
overview, our article identifies what these approaches have
in common and identifies numerous important concepts.

Furthermore, we have provided guidelines for the appli-
cation of formal methods for particular tasks in the SPL do-
main, coupled with pointers to relevant tools and literature.

Last but not least, the article identifies open challenges
for research of formal methods in SPL.
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