
Verification-centric
Software Development
in Java with BON, JML,

and ESC/Java2
Joe Kiniry

University College Dublin

Outline of the Talk
• example projects

• effectively using formal methods

• analysis and design with BON

• assertions and specifications

• contracts and system specifications in BON

• applying BON to Java and JML

• code standards and metrics

• static analysis for software construction

• models in JML

Part 0:
Example Projects

First Year Course:
One Dimensional

Cellular Automaton
Simulator

Cellular Automata

• a fundamental model for computation

• very simple conceptual model

• small set of concepts

• multiple complexity refinements

• dimensionality

• cell type

Project Dimensions

• classified as a small-sized project

• our estimate is <<1,000 LOC

• ~50 LOC/week/person

• our complete design has 9 classes

• some classes are optional and are only
implemented by advanced students

Co-Analysis and
Co-Design

• system analysis and design was conducted
live, in-class, with first year students

• analysis was captured with BON

• informal charts only, no tool support

• design was captured with JML

• students were not told that they were doing
formal analysis or design

Implementation
Process

• students implemented the resulting JML-
annotated Java using design by contract

• students used Emacs & vi, not Eclipse

• a Makefile was provided that triggered
javac, jml, jmlc, escjava2, javadoc, and jmldoc

• no unit testing was performed whatsoever

• for other, larger projects tests are
frequently generated with jml-junit

Results

• ~80% of the teams’ programs worked
correctly the first time they executed

• one team had an NPE, fixed in an hour after
they ran ESC/Java2 for the first time

• another had a mysterious crash, traced and
fixed using a debugger in one afternoon

• this process results in a very high-quality
Java system that is very nearly “correct-by-
construction”, accomplished by 1st years

Second Year Course:
The C=64 Game

“Thrust”

“Thrust”

“Thrust”

The Project:
The C=64 Game “Thrust”

• connection to core computing concepts via
discrete event simulation

• a few major components

• file I/O, GUI and rendering, simulation

• several key algorithms

• looks cool and is fun to play

Project Dimensions

• classified as a medium-sized project

• our estimate is <<5,000 LOC

• ~100-125 LOC/week/person

• our (very) complete design has 75 classes

• recall that original game written by one
person in a few months in 650X assembler

Project Decomposition
• I/O: keyboard input to start and play game

• GUI: bitmaps (terrain), fonts (scores, fuel),
and shapes (spaceship, bullets, stars)

• sound: music and effects

• core data structures: entities (spaceship,
factory, bullet, etc.), score and high score

• discrete event simulation: main event loop,
animations (barriers, explosions, factory
smoke, stars, etc.), physics, collisions

What Ones Mind
Wants To Do Now

• How do I open a window?

• How do I make a sound?

• How do I draw a line?

• Will I use arrays?

• Floating point numbers or integers?

• etc.

The Proper Course

• Ignore the problems of programming.

• Forget about Java.

• Step back and take a deep breath.

• Relax.

• Brainstorm about the idea of Thrust.

Commercial Software
Development:

The KOA Tally System

Case Study:
KOA Tally System

• Dutch government decided to make
remote voting available in 2004 to
expatriates

• remote voting is voting by telephone or
via the Internet

• a consulting firm LogicaCMG designed,
developed, tested, and deployed system

• RUN participated in review of system

KOA Tally System:
Background

• a primary recommendation of review was that
a 3rd party should re-implement a critical part
of the system from scratch

• government opened up bid on independent
implementation of counting/tally component

• RUN group bid on contract and won

• key factor in bid was proposed use of
formal methods (JML) in application
development

KOA Architecture

• three main components, each the
responsibility of one developer

• file and data I/O (E. Hubbers)

• GUI (M. Oostdijk)

• core data structures and counting
algorithm (J. Kiniry)

• most of specification and verification effort
was focused in the core subsystem

Code Standards

• lightweight code standards for this effort

• basic rules about identifier naming,
documentation, annotation, and spacing

• each developer had his own idiom

• avoid enforcement or tool use that
causes merge conflicts

• coding standard checked with CheckStyle

• http://checkstyle.sourceforge.net/

Version and Config
Management

• version management via CVS

• policies on commits and merges

• code must build and specs must be right

• rules are developer-enforced (not triggers)

• configuration management via Make, a single
class of constants, and runtime switches

• with more time, Java properties and
bundles would be used as well

Automated Build
System

• GNU make based build system

• works on all operating systems

• single developer responsible for build
architecture and major upkeep

• major targets include:

• normal build, jmlc build, unit test
generation and execution, verification,
documentation generation, style checking

Unit Testing

• one developer responsible for unit test
architecture and major upkeep

• each developer responsible for identifying
key values of their data types

• unit test only core classes, not GUI or I/O

• automatically generate ~8,000 tests

• ensure nearly 100% coverage for core

• complements verification effort

Verification
• attempt to verify only core classes

• focus effort on opportunities for greatest
impact and lowest risk

• results of verification with ESC/Java2.0a7

• 47% of core methods check with ESC/Java2

• 10% fail due to Simplify issues

• 31% of postconditions do not verify due to
completeness problems

• 12% fail due to invariant issues

Application Summary

File I/O GUI Core

classes

methods

NCSS

specs

specs:NCSS

8 13 6

154 200 83

837 1,599 395

446 172 529

1:2 1:10 5:4

Part I:
Effectively Using
Formal Methods

Software Engineering Processes
incorporating Formal Specification

The Range of Software
Engineering Processes
• old-school processes

• CRC and state-chart based

• heavyweight processes

• all up-front design, use UML or similar

• lightweight processes

• unit test-centric (XP), design on-the-fly

• custom processes

• use a process that works for you

Effective JML

• effectively using JML means effectively using
JML tools

• development process of project (macro-
scale) is realized by daily development
process (micro-scale)

• rich tool support must be supported by
rich process support

• code standards and organization support

Facets of Critical
Software Engineering

• requires a rich environment that
synthesizes all primary facets

• code standards

• version and configuration management

• automated build system

• unit tests

• requires developer investment in learning,
applying, and understanding the method

Non-technical Facets

• requires social adoption

• internal tensions caused by mandated
changes in process can cause a
development team to self-destruct

• requires institutional support

• an understanding of the time, resources,
and potential results of development with
formal methods

Specification in Process

• “Contract the Design”

• one is given an architecture with no
specification, little documentation and
one must somehow check the system is
correct

• “Design by Contract”

• one designs and builds a system relying
upon existing components and
frameworks

Contract the Design

• a body of code exists and must be annotated

• the architecture is typically ill-specified

• the code is typically poorly documented

• the number and quality of unit tests is
typically very poor

• the goal of annotation is typically unclear

Goals of
Contract the Design

• improve understanding of architecture with
high-level specifications

• improve quality of subsystems with
medium-level specifications

• realize and test against critical design
constraints using specification-driven code
and architecture evaluation

• evaluate system quality through rigorous
testing or verification of key subsystems

A Process Outline for
Contract the Design

• directly translate high-level architectural
constraints into invariants

• key constraints on data models, custom
data structures, and legal requirements

• express medium-level design decisions with
invariants and pre-conditions

• use JML models only where appropriate

• generate unit tests for all key data values

Design by Contract
• writing specifications first is difficult but

very rewarding in the long-run

• one designs the system by thinking and
writing contracts

• a refinement-centric process akin to early
instruction in Dijkstra/Hoare approach

• ESC/Java2 works well for checking the
consistency of formal designs

• resisting the urge to write code is hard

Goals of
Design by Contract

• work out application design by writing
contracts rather than code

• express design at multiple levels

• BON/UML JML JML w/ privacy

• refine design by refining contracts

• write code once when architecture is stable

A Process Outline for
Design by Contract

• outline architecture by realizing classifiers
with classes

• capture system constraints with invariants

• use JML models only where appropriate

• focus on preconditions over postconditions

• develop test suite for design by writing a
data generator for all interesting types

Part II:
Analysis and Design

with BON

Two Levels of BON
Specifications

• informal charts and diagrams

• specified primary concepts of system,
scenarios of use, primary events

• formal diagrams

• specifies contracts on type interfaces,
method call sequences, architecture
structure

Informal BON Charts
• the static model

• system diagrams (informal charts)

• class dictionary (a dependent chart)

• the dynamic model

• object creation charts

• scenario charts

• event charts

Class Dictionary
• lists all primary concepts (classifiers) in the system

• each class’s cluster(s) and description are
provided

• clusters are dependent upon the system and
cluster charts

• description is dependent upon the corresponding
class chart

• the MONITORING_SYSTEM class dictionary

http://secure.ucd.ie/products/opensource/IDebug/docs/BON/html/MONITORING_CLASS_DICTIONARY.html
http://secure.ucd.ie/products/opensource/IDebug/docs/BON/html/MONITORING_CLASS_DICTIONARY.html

Object Creation Charts

• shows what classes create new instances of
other classes

• serves as a link between the static and the
dynamic models

• only high-level analysis classes are treated

• the MONITORING_SYSTEM creation chart

http://secure.ucd.ie/products/opensource/IDebug/docs/BON/html/MONITORING_OBJECT_CREATION.html
http://secure.ucd.ie/products/opensource/IDebug/docs/BON/html/MONITORING_OBJECT_CREATION.html

Creation Chart
ExampleDYNAMIC CHARTS 99

CREATION CONFERENCE_SUPPORT Part: 1/1

COMMENT
List of classes creating objects in the system.

INDEXING
created: 1993-02-18 kw

Class Creates instances of

CONFERENCE PROGRAM_COMMITTEE, TECHNICAL_COMMITTEE,

ORGANIZATION_COMMITTEE, TIME_TABLE

PROGRAM_COMMITTEE PROGRAM, PAPER, PAPER_SESSION, PERSON

TECHNICAL_COMMITTEE TUTORIAL, TUTORIAL_SESSION, PERSON

ORGANIZATION_COMMITTEE MAILING, ADDRESS_LABEL, STICKY_FORM,

REGISTRATION, PERSON, INVOICE, INVOICE_FORM,

ATTENDEE_LIST, LIST_FORM, POSTER_SIGN,

POSTER_FORM, EVALUATION_SHEET,

EVALUATION_FORM, STATISTICS

PRESENTATION* STATUS, PERSON

PAPER REVIEW, ACCEPTANCE_LETTER, REJECTION_LETTER,

LETTER_FORM, AUTHOR_GUIDELINES

TUTORIAL ACCEPTANCE_LETTER, REJECTION_LETTER,

LETTER_FORM

REGISTRATION CONFIRMATION_LETTER, LETTER_FORM, BADGE,

BADGE_FORM

Figure 5.4 Object creation chart

operations will actually be implemented by the deferred class or by its children,

if we know their invocation may lead to the creation of objects of certain types,

this information should not have to be duplicated in all descendant classes. By

listing the classes STATUS and PERSON in the entry for PRESENTATION, we

can avoid repetition for the child classes PAPER and TUTORIAL, and may

instead focus on the differences.

It is usually best to exclude frequently reused library classes, such as SET,

TABLE, and DATE, from the creation chart, since it is rarely interesting to follow

the creation of such objects in detail.

5.3 DYNAMIC DIAGRAMS

Objects

We are now ready to describe the BON dynamic notation used in system

scenarios. A dynamic diagram consists of a set of communicating objects

Scenario Charts

• semi-equivalent to UML’s use-case diagrams

• a scenario is a type of system usage, user or
programmatic

• focus is on important top-level scenarios
that are critical to the system design

• only natural language is used for the high-
level specification

Scenarios

• the description of scenario is used as the
documentation for

• the public interface, and

• the corresponding unit test suite

• scenarios are refined at the intermediate
level of specification into object message
passing descriptions

Scenario Chart
Example98 THE DYNAMIC MODEL

SCENARIOS CONFERENCE_SUPPORT Part: 1/1

COMMENT
Set of representative scenarios to show
important types of system behavior.

INDEXING
created: 1993-02-16 kw

Send out calls and invitations:
Using mailing lists and records of previous conference attendees and speakers, prepare and
send out calls for papers and invitations to attend the conference.

Create sessions and chairs:
Partition the conference into sessions of suitable length; allocate session rooms and select a
chairperson for each session.

Register paper and start review process:
A paper is registered and three referees are selected; the paper is sent to each referee, and
the paper status is recorded.

Accept paper and notify authors:
A submitted paper is selected and an acceptance date is entered; a notification letter is
created and sent to the authors.

Assign paper to session:
A session suitable for the paper is selected and the paper is entered in the list of
presentations for that session.

Register attendee:
An attendee is registered with his/her address and selected tutorials are recorded.

Print conference attendee list:
All registrations are scanned and a list with attendee names, addresses and affiliations is
produced and sent to a printer.

Print badge:
An attendee is selected, and the corresponding badge is printed in appropriate format.

Figure 5.3 Scenario chart for a conference system

model. All other classes, however, must potentially have objects created at some

point during system execution, otherwise they are superfluous and should be

removed (unless, of course, we are developing libraries of reusable classes).

Thinking through how objects are created may thus help find possible fossil

classes, but it also helps the developer form an impression of how some of the

operations in the dynamic diagrams may be realized. The idea is to produce an

object creation chart , where for each class that may create other objects, the

types of these objects are listed. (Only high-level analysis classes are considered

here; keeping track of created lower-level objects is not the intention.) An

example for the conference system is shown in figure 5.4.

The class PRESENTATION in the creation chart is a deferred class with the

classes PAPER and TUTORIAL as descendants. Note that deferred classes may

occur in the left column of object creation charts, because a deferred class may

contain operations that create other objects. Regardless of whether these

Event Charts

• object interactions are ultimately caused by
external events

• external events trigger system execution

• internal events are high-level, important
triggers within a system

• typically an external event triggers one or
more internal events

Event Identification

• external events connote the external
(perhaps public) interface of a system

• internal events connote the private
subcomponent interfaces within a system

• each event is either ingoing or outgoing

• the MONITORING_SYSTEM external
event diagram and internal event diagram

http://secure.ucd.ie/products/opensource/IDebug/docs/BON/html/MONITORING_EXTERNAL_EVENTS.html
http://secure.ucd.ie/products/opensource/IDebug/docs/BON/html/MONITORING_EXTERNAL_EVENTS.html
http://secure.ucd.ie/products/opensource/IDebug/docs/BON/html/MONITORING_EXTERNAL_EVENTS.html
http://secure.ucd.ie/products/opensource/IDebug/docs/BON/html/MONITORING_EXTERNAL_EVENTS.html
http://secure.ucd.ie/products/opensource/IDebug/docs/BON/html/MONITORING_INTERNAL_EVENTS.html
http://secure.ucd.ie/products/opensource/IDebug/docs/BON/html/MONITORING_INTERNAL_EVENTS.html

Example External
Event Chart

DYNAMIC CHARTS 95

chart for a conference system, collecting some interesting incoming external

events. For each external event, the event chart lists the types of object that may

become involved as part of the system response.

EVENTS CONFERENCE_SUPPORT Part: 1/2

COMMENT
Selected external events triggering
representative types of behavior.

INDEXING
created: 1993-02-15 kw
revised: 1993-04-07 kw

External (incoming) Involved object types

Request to register a submitted
paper

CONFERENCE, PROGRAM_COMMITTEE, PAPER

Request to accept a paper CONFERENCE, PROGRAM_COMMITTEE, PAPER,

STATUS

Request to assign a paper to a
session

CONFERENCE, PROGRAM_COMMITTEE,

PROGRAM, PAPER, PAPER_SESSION

Selection of a session chairperson CONFERENCE, PROGRAM_COMMITTEE,

PROGRAM, PAPER_SESSION, PERSON

Request to register an attendee CONFERENCE, ORGANIZING_COMMITTEE,

REGISTRATION, PERSON

Request to print conference
attendee list

CONFERENCE, ORGANIZING_COMMITTEE,

REGISTRATION, PERSON, ATTENDEE_LIST

Figure 5.1 Event chart: incoming external events

Analogously, the event chart gives the same information for a list of important

internal outgoing events as shown in figure 5.2. Since all outgoing events are

indirectly triggered by incoming events, the outgoing events listed all have one

or more corresponding incoming external events.

For example, the outgoing event “call for papers is sent” was probably

triggered by an incoming event “request to send call for papers” resulting from

user keyboard input. Or else the calls may be sent automatically at some preset

date, but then the system clock interrupt may be considered as the incoming

external triggering event. Similarly, each incoming external event usually has a

corresponding outgoing event. A request to register a conference participant will

almost certainly yield some kind of confirmation being sent back to the user—at

least indirectly by issuing a standard system prompt as opposed to an error

message—indicating that the registration was successful.

In either case, both the incoming and the outgoing events will point to the

same scenario, so there is normally no need to list both related events in the

Example Internal
Event Chart96 THE DYNAMIC MODEL

EVENTS CONFERENCE_SUPPORT Part: 2/2

COMMENT
Selected internal events triggering system
responses leaving the system.

INDEXING
created: 1993-02-15 kw
revised: 1993-04-03 kw

Internal (outgoing) Involved object types

Call for papers is sent CONFERENCE, ORGANIZING_COMMITTEE,

PERSON, MAILING

Invitations are sent CONFERENCE, ORGANIZING_COMMITTEE,

PERSON, MAILING

A paper is sent to referees CONFERENCE, ORGANIZING_COMMITTEE,

PAPER, STATUS, REVIEW, PERSON

An invoice is sent CONFERENCE, ORGANIZING_COMMITTEE,

REGISTRATION, PERSON, INVOICE,

INVOICE_FORM

Warning issued for exceeding
tutorial session capacity

CONFERENCE, REGISTRATION, TUTORIAL

An author notification is sent CONFERENCE, PROGRAM_COMMITTEE,

PERSON, PRINT_OUT*, LETTER_FORM

Figure 5.2 Event chart: outgoing internal events

event chart. Outgoing events like “warning issued for exceeding conference

capacity” are different, since these are triggered when the system state reaches

certain values. Such triggering states are of course also the indirect result of

incoming events, like trying to register one more attendee, but it is not always

easy to know exactly which ones, so we normally record this group of outgoing

events separately.

System scenarios

A system scenario is a description of a possible partial system execution. It can

be viewed as a sequence of events initiated by one or more triggering events

(internal or external) and showing the resulting events in order of occurrence.

Some of the events in a scenario will usually be external, but not always.

Particularly during design there may be many interesting, purely internal

scenarios that are worth capturing as part of the high-level system description.

Anyway, the great majority of events in most scenarios will be internal events;

that is, generated by the system itself. As we recall from the beginning of this

chapter, object-oriented system execution is really nothing but message passing

between objects, so all events except the incoming external ones are caused by

Part III:
Assertions and
Specifications

Assertions
• the assert statement is the fundamental

construct used to specify the correct
behavior of software

• the statement

means

assert S;

“S must be true at this point

in the program’s execution”

Assertion Syntax in Java

•all modern programming languages have an
assert statement

• beginning in Java 1.4, assert is a keyword

• the syntax of a Java assert statement is

• boolean is the predicate that must be true

• String is an optional message that will be
printed if/when the assertion fails

assert <boolean>[: <String>]

Examples of
Assertion Use

assert z != 0;
x = y/z;

assert (x > MIN_WIDTH);
my_window.setWidth(x);

assert p(x) : “p failed when x=” + x;
a_method_that_depends_upon_p(x);

• if an assertion fails, the program halts

• thus, assertion failures are critical failures

• to assert something that is not critical, then
a logging message is appropriate

Assertions vs. Logging

if (Debug.DEBUG && !p(x))
	 System.err.println(“p(”+x+“) fails”);
a_method_that_depends_upon_p(x);

Logging Frameworks

• it is always wiser to use a logging
framework than to use embedded printlns

• if a println must be used, guard it with a
conditional on a constant boolean

• setting the guard false eliminates all
logging code (saves space and time)

• the premier logging frameworks are
java.util.logging, log4J, and IDebug

Specifications
• specifications of software range in formality

• informal - English documentation (e.g.,
“normal” comments)

• semi-formal - structured English
documentation (e.g., Javadoc)

• formal - annotations and assertions (e.g,.
assert statements and contracts)

•contracts are a key concept in robust
software design and construction

Informal Specifications
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

Informal Specifications
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

• what happens when:

Informal Specifications
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

• what happens when:

• amount is negative?

Informal Specifications
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

• what happens when:

• amount is negative?

• amount is bigger than the balance?

Informal Specifications
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

• what happens when:

• amount is negative?

• amount is bigger than the balance?

• is the balanced changed when failure?

Semi-Formal
Specifications

/** Debit this account.
 * @param amount the amount to debit.
 * <code>amount</code> must be
 * non-negative.
 * @result the balance of this account
 * after the debit successfully occurs.
 */
 public int debit(int amount)

Semi-Formal
Specifications

/** Debit this account.
 * @param amount the amount to debit.
 * <code>amount</code> must be
 * non-negative.
 * @result the balance of this account
 * after the debit successfully occurs.
 */
 public int debit(int amount)

• many of the same questions arise even
though the documentation is much clearer

Formal Specifications

/** Debit this account.
 * @param amount the amount to debit.
 * @result the resulting balance.
 */
/*@ requires amount >= 0;
 @ ensures balance == \old(balance-amount) &&
 @ \result == balance;
 @*/
 public int debit(int amount)

Writing and Calling
Methods Incorrectly

Writing and Calling
Methods Incorrectly

/* Deduct some cash from this account and
 return how much money is left. */
 public int debit(int amount) {
 if (amount < 0) throw NDE(amount);
 if (balance < amount)
 throw NBE(balance);
 ...
 }

Writing and Calling
Methods Incorrectly

/* Deduct some cash from this account and
 return how much money is left. */
 public int debit(int amount) {
 if (amount < 0) throw NDE(amount);
 if (balance < amount)
 throw NBE(balance);
 ...
 }

try {
 b = debit(a);
 if (b < 0) throw NBE();
} catch (Exception e) {
 System.exit(-1);
}

Writing and Calling
Methods Incorrectly

/* Deduct some cash from this account and
 return how much money is left. */
 public int debit(int amount) {
 if (amount < 0) throw NDE(amount);
 if (balance < amount)
 throw NBE(balance);
 ...
 } HORRIBLE!

try {
 b = debit(a);
 if (b < 0) throw NBE();
} catch (Exception e) {
 System.exit(-1);
}

Calling Methods Correctly
/*@ requires amount >= 0;
 @ ensures balance == \old(balance-amount) &&
 @ \result == balance;
 @*/
 public int debit(int amount) {
 ...all conditionals are gone!
 ...
 }

if (debit_amount < 0)
 handle_bad_debit(debit_amount);
else
 resulting_balance = debit(debit_amount);

Design by Contract
•capture architectural, class-level decisions early as

constraints

•e.g., all Citizens have two parents

•realize constraints in software as invariants

•an invariant is an assertion that must always be
true whenever a method is called or exits

•capture contracts at method-level in medium-level
design using English

•realize contracts in code using requires and
ensures statements

An Example Use of
Design by Contract34 THE STATIC MODEL—CLASSES AND CLUSTERS

CLASS CITIZEN Part: 1/1

TYPE OF OBJECT
Person born or living in a country

INDEXING
cluster: CIVIL_STATUS
created: 1993-03-15 jmn
revised: 1993-05-12 kw

Queries Name, Sex, Age, Single, Spouse, Children, Parents,
Impediment to marriage

Commands Marry. Divorce.

Constraints Each citizen has two parents.
At most one spouse allowed.
May not marry children or parents or person of same sex.
Spouse s spouse must be this person.
All children, if any, must have this person among their parents.

CLASS NOBLEPERSON Part: 1/1

TYPE OF OBJECT
Person of noble rank

INDEXING
cluster: CIVIL_STATUS
created: 1993-03-15 jmn
revised: 1993-05-12 kw, 1993-12-10 kw

Inherits from CITIZEN

Queries Assets, Butler

Constraints Enough property for independence.
Can only marry other noble person.
Wedding celebrated with style.
Married nobility share their assets and must have a butler.

Figure 3.3 Class charts: types of citizen

the class. Keywords for version control have been added to the indexing clause,

since classes represent the evolving basic components of a system (keeping track

of changes to clusters is usually not very interesting). After the chart header a

number of dynamic entries follow, specified only when non-empty:

• Inherits from

– lists classes that are direct ancestors to this class.

• Queries

– lists applicable queries (value return; may not change system state).

• Commands

– lists applicable commands (no value return; may change system state).

Related Class Features

• queries

• spouse? single?

• command

• marry! divorce!

• constraints

• at most one spouse is allowed

• spouse’s spouse must be this person

Class Sketch

 Citizen my_spouse;
 //@ invariant (my_spouse != null) ==>
 //@ my_spouse.my_spouse == this;

 Citizen spouse() { returns spouse; }
 boolean single() { returns spouse == null; }
 //@ requires single();
 //@ ensures !single() && spouse() == new_spouse;
 void marry(Citizen new_spouse)
 { my_spouse = new_spouse; }
 //@ requires !single();
 //@ ensures single();
 void divorce() { my_spouse = null; }

Testing with
Specifications

• specifications mean that no valid parameter
testing is necessary in implementations

• the precondition is requiring the client to
fulfill their side of the contract for supplier

• when calling a method that has a specification,
checking for errors, return values, etc. is no
longer necessary

• the supplier is ensuring (guaranteeing) their
side of the contract to client

Unit Testing and
Programming with Specs

• ~90% of your method-level unit tests are
automatically generated

• ~25% less code is written because there is no
need to test parameters values nor results of
method calls for correctness

• code is not littered with try/catch blocks to
catch exceptions

Part IV:
Contracts and

Specifications in BON

BON Assertion
Elements46 THE STATIC MODEL—CLASSES AND CLUSTERS

ASSERTION ELEMENTS

Graphical BON Textual BON Explanation

! name delta name Attribute changed

old expr old expr Old return value

Result Result Current query result

@ Current Current object

" Void Void reference

+ ! * / + ! * / Basic numeric operators

^ ^ Power operator

// // Integer division

\\ \\ Modulo

= = Equal

/= Not equal

< < Less than

$ <= Less than or equal

> > Greater than

% >= Greater than or equal

& !> Implies (semi-strict)

' <!> Equivalent to

¬ not Not

and and And (semi-strict)

or or Or (semi-strict)

xor xor Exclusive or

(exists There exists

) for_all For all

| such_that Such that

• it_holds It holds

* member_of Is in set

+ not member_of Is not in set

: type : type Is of type

{ } { } Enumerated set

. . . . Closed range

Figure 3.13 Elements of assertions

manservant. The third feature redefines the spouse query so it will now return

NOBLEPERSON, thus satisfying both tradition and the covariant rule. Finally,

the marry command is defined to reflect what is expected from a high-class

wedding. The signature is again changed, and the postcondition extended to

ensure that noble couples who link their destinies will not lack domestic support,

and that each party will have access to the accumulated fortune minus the

amount that must be spent to ensure a wedding with style.

BON Assertion
Elements

46 THE STATIC MODEL—CLASSES AND CLUSTERS

ASSERTION ELEMENTS

Graphical BON Textual BON Explanation

! name delta name Attribute changed

old expr old expr Old return value

Result Result Current query result

@ Current Current object

" Void Void reference

+ ! * / + ! * / Basic numeric operators

^ ^ Power operator

// // Integer division

\\ \\ Modulo

= = Equal

/= Not equal

< < Less than

$ <= Less than or equal

> > Greater than

% >= Greater than or equal

& !> Implies (semi-strict)

' <!> Equivalent to

¬ not Not

and and And (semi-strict)

or or Or (semi-strict)

xor xor Exclusive or

(exists There exists

) for_all For all

| such_that Such that

• it_holds It holds

* member_of Is in set

+ not member_of Is not in set

: type : type Is of type

{ } { } Enumerated set

. . . . Closed range

Figure 3.13 Elements of assertions

manservant. The third feature redefines the spouse query so it will now return

NOBLEPERSON, thus satisfying both tradition and the covariant rule. Finally,

the marry command is defined to reflect what is expected from a high-class

wedding. The signature is again changed, and the postcondition extended to

ensure that noble couples who link their destinies will not lack domestic support,

and that each party will have access to the accumulated fortune minus the

amount that must be spent to ensure a wedding with style.

The Person Class
WORKING OUT CONTRACTING CONDITIONS 211

PERSON

name , address: VALUE

children , parents: LIST [PERSON]

Invariant

! c " children • (# p " c .parents • p = @)

Figure 8.6 Consistency requirement: your children are really yours

class PERSON

feature

name , address: VALUE

children , parents: LINKED_LIST [PERSON]

generated_assertion_1: BOOLEAN is

do

from

children .start; Result := true

until

children .after

loop

Result := Result and generated_subassertion_1 (children .item)

children .forth

end

end

generated_subassertion_1 (c: PERSON): BOOLEAN is

do

from

c .parents .start

until

c .parents .after

loop

Result := Result or (c .parent .item = Current)

c .parents .forth

end

end

invariant

generated_assertion_1

end

Figure 8.7 Class with generated assertion routines

Textual Specification
deferred class CITIZEN
 feature name,sex,age: VALUE
 spouse: CITIZEN −−Husband or wife
 children, parents: SET[CITIZEN] −−Close relatives, if any
 single: BOOLEAN −−Is this citizen single?
 ensure Result <−> spouse=Void
 end
 deferred marry −−Celebrate the wedding.
 −>sweetheart: CITIZEN
 require sweetheart /= Void and can_marry(sweetheart)
 ensure spouse=sweetheart
 end
 ...
 divorce −−Admit mistake.
 require not single
 ensure single and (old spouse).single
 end
 invariant
 single or spouse.spouse=Current;
 parents.count=2;
 for_all c member_of children it_holds
 (exists p member_of c.parents it_holds p=Current)
end −−class CITIZEN

Example Interface
Specifications

DYNAMIC DIAGRAMS 375

static_diagram Technical_events

component

class REVIEW persistent

feature

reviewer: PERSON

score: VALUE

comments: TEXT

invariant

score member_of { ’A’ . . ’D’}

end

class STATUS persistent

feature

received: DATE

review_started: DATE

accepted: DATE

rejected: DATE

final_received: DATE

invariant

received <= review_started;

review_started <= final_received;

accepted = Void or rejected = Void

end

class PAPER persistent

inherit

PRESENTATION

feature

copyright_transferred: BOOLEAN

reviews: SET [REVIEW]

final_score: VALUE

award_best_paper

transfer_copyright

require

status .accepted /= Void

ensure

copyright_transferred

end

effective accept

effective reject

end

deferred class PRESENTATION

feature

code: VALUE

title: VALUE

authors: SET [PERSON]

status: STATUS

speakers: SET [PERSON]

deferred accept

ensure status .accepted /= Void end

deferred reject

ensure status .rejected /= Void end

invariant

for_all p , q: PRESENTATION such_that

p /= q it_holds p .code /= q .code and

p .title /= q .title

end

class TUTORIAL persistent

inherit PRESENTATION

feature

capacity: VALUE

attendee_count: VALUE

prerequisite_level: VALUE

track: VALUE

duration: DURATION

effective accept

effective reject

end

class PAPER_SESSION persistent

inherit SESSION

feature

presentations: SET [PAPER]

invariant

for_all p member_of presentations it_holds

p .status .accepted /= Void

end

class SESSION

feature

chair: PERSON

code: VALUE

track: VALUE

start , end: DATE

conference_room: VALUE

invariant start < end

end

class TUTORIAL_SESSION persistent

inherit

SESSION

feature

lecture: TUTORIAL

invariant

lecture .status .accepted /= Void

end

PAPER inherit PRESENTATION

TUTORIAL inherit PRESENTATION

PAPER_SESSION inherit SESSION

TUTORIAL_SESSION inherit SESSION

PAPER client REVIEW

PRESENTATION client STATUS

PAPER_SESSION client PAPER

TUTORIAL_SESSION client TUTORIAL

end

Figure B.14 Technical_events (cf. figure 9.31)

STATUS

DYNAMIC DIAGRAMS 375

static_diagram Technical_events

component

class REVIEW persistent

feature

reviewer: PERSON

score: VALUE

comments: TEXT

invariant

score member_of { ’A’ . . ’D’}

end

class STATUS persistent

feature

received: DATE

review_started: DATE

accepted: DATE

rejected: DATE

final_received: DATE

invariant

received <= review_started;

review_started <= final_received;

accepted = Void or rejected = Void

end

class PAPER persistent

inherit

PRESENTATION

feature

copyright_transferred: BOOLEAN

reviews: SET [REVIEW]

final_score: VALUE

award_best_paper

transfer_copyright

require

status .accepted /= Void

ensure

copyright_transferred

end

effective accept

effective reject

end

deferred class PRESENTATION

feature

code: VALUE

title: VALUE

authors: SET [PERSON]

status: STATUS

speakers: SET [PERSON]

deferred accept

ensure status .accepted /= Void end

deferred reject

ensure status .rejected /= Void end

invariant

for_all p , q: PRESENTATION such_that

p /= q it_holds p .code /= q .code and

p .title /= q .title

end

class TUTORIAL persistent

inherit PRESENTATION

feature

capacity: VALUE

attendee_count: VALUE

prerequisite_level: VALUE

track: VALUE

duration: DURATION

effective accept

effective reject

end

class PAPER_SESSION persistent

inherit SESSION

feature

presentations: SET [PAPER]

invariant

for_all p member_of presentations it_holds

p .status .accepted /= Void

end

class SESSION

feature

chair: PERSON

code: VALUE

track: VALUE

start , end: DATE

conference_room: VALUE

invariant start < end

end

class TUTORIAL_SESSION persistent

inherit

SESSION

feature

lecture: TUTORIAL

invariant

lecture .status .accepted /= Void

end

PAPER inherit PRESENTATION

TUTORIAL inherit PRESENTATION

PAPER_SESSION inherit SESSION

TUTORIAL_SESSION inherit SESSION

PAPER client REVIEW

PRESENTATION client STATUS

PAPER_SESSION client PAPER

TUTORIAL_SESSION client TUTORIAL

end

Figure B.14 Technical_events (cf. figure 9.31)

PAPER

DYNAMIC DIAGRAMS 375

static_diagram Technical_events

component

class REVIEW persistent

feature

reviewer: PERSON

score: VALUE

comments: TEXT

invariant

score member_of { ’A’ . . ’D’}

end

class STATUS persistent

feature

received: DATE

review_started: DATE

accepted: DATE

rejected: DATE

final_received: DATE

invariant

received <= review_started;

review_started <= final_received;

accepted = Void or rejected = Void

end

class PAPER persistent

inherit

PRESENTATION

feature

copyright_transferred: BOOLEAN

reviews: SET [REVIEW]

final_score: VALUE

award_best_paper

transfer_copyright

require

status .accepted /= Void

ensure

copyright_transferred

end

effective accept

effective reject

end

deferred class PRESENTATION

feature

code: VALUE

title: VALUE

authors: SET [PERSON]

status: STATUS

speakers: SET [PERSON]

deferred accept

ensure status .accepted /= Void end

deferred reject

ensure status .rejected /= Void end

invariant

for_all p , q: PRESENTATION such_that

p /= q it_holds p .code /= q .code and

p .title /= q .title

end

class TUTORIAL persistent

inherit PRESENTATION

feature

capacity: VALUE

attendee_count: VALUE

prerequisite_level: VALUE

track: VALUE

duration: DURATION

effective accept

effective reject

end

class PAPER_SESSION persistent

inherit SESSION

feature

presentations: SET [PAPER]

invariant

for_all p member_of presentations it_holds

p .status .accepted /= Void

end

class SESSION

feature

chair: PERSON

code: VALUE

track: VALUE

start , end: DATE

conference_room: VALUE

invariant start < end

end

class TUTORIAL_SESSION persistent

inherit

SESSION

feature

lecture: TUTORIAL

invariant

lecture .status .accepted /= Void

end

PAPER inherit PRESENTATION

TUTORIAL inherit PRESENTATION

PAPER_SESSION inherit SESSION

TUTORIAL_SESSION inherit SESSION

PAPER client REVIEW

PRESENTATION client STATUS

PAPER_SESSION client PAPER

TUTORIAL_SESSION client TUTORIAL

end

Figure B.14 Technical_events (cf. figure 9.31)

PRESENTATION

DYNAMIC DIAGRAMS 375

static_diagram Technical_events

component

class REVIEW persistent

feature

reviewer: PERSON

score: VALUE

comments: TEXT

invariant

score member_of { ’A’ . . ’D’}

end

class STATUS persistent

feature

received: DATE

review_started: DATE

accepted: DATE

rejected: DATE

final_received: DATE

invariant

received <= review_started;

review_started <= final_received;

accepted = Void or rejected = Void

end

class PAPER persistent

inherit

PRESENTATION

feature

copyright_transferred: BOOLEAN

reviews: SET [REVIEW]

final_score: VALUE

award_best_paper

transfer_copyright

require

status .accepted /= Void

ensure

copyright_transferred

end

effective accept

effective reject

end

deferred class PRESENTATION

feature

code: VALUE

title: VALUE

authors: SET [PERSON]

status: STATUS

speakers: SET [PERSON]

deferred accept

ensure status .accepted /= Void end

deferred reject

ensure status .rejected /= Void end

invariant

for_all p , q: PRESENTATION such_that

p /= q it_holds p .code /= q .code and

p .title /= q .title

end

class TUTORIAL persistent

inherit PRESENTATION

feature

capacity: VALUE

attendee_count: VALUE

prerequisite_level: VALUE

track: VALUE

duration: DURATION

effective accept

effective reject

end

class PAPER_SESSION persistent

inherit SESSION

feature

presentations: SET [PAPER]

invariant

for_all p member_of presentations it_holds

p .status .accepted /= Void

end

class SESSION

feature

chair: PERSON

code: VALUE

track: VALUE

start , end: DATE

conference_room: VALUE

invariant start < end

end

class TUTORIAL_SESSION persistent

inherit

SESSION

feature

lecture: TUTORIAL

invariant

lecture .status .accepted /= Void

end

PAPER inherit PRESENTATION

TUTORIAL inherit PRESENTATION

PAPER_SESSION inherit SESSION

TUTORIAL_SESSION inherit SESSION

PAPER client REVIEW

PRESENTATION client STATUS

PAPER_SESSION client PAPER

TUTORIAL_SESSION client TUTORIAL

end

Figure B.14 Technical_events (cf. figure 9.31)

DYNAMIC DIAGRAMS 375

static_diagram Technical_events

component

class REVIEW persistent

feature

reviewer: PERSON

score: VALUE

comments: TEXT

invariant

score member_of { ’A’ . . ’D’}

end

class STATUS persistent

feature

received: DATE

review_started: DATE

accepted: DATE

rejected: DATE

final_received: DATE

invariant

received <= review_started;

review_started <= final_received;

accepted = Void or rejected = Void

end

class PAPER persistent

inherit

PRESENTATION

feature

copyright_transferred: BOOLEAN

reviews: SET [REVIEW]

final_score: VALUE

award_best_paper

transfer_copyright

require

status .accepted /= Void

ensure

copyright_transferred

end

effective accept

effective reject

end

deferred class PRESENTATION

feature

code: VALUE

title: VALUE

authors: SET [PERSON]

status: STATUS

speakers: SET [PERSON]

deferred accept

ensure status .accepted /= Void end

deferred reject

ensure status .rejected /= Void end

invariant

for_all p , q: PRESENTATION such_that

p /= q it_holds p .code /= q .code and

p .title /= q .title

end

class TUTORIAL persistent

inherit PRESENTATION

feature

capacity: VALUE

attendee_count: VALUE

prerequisite_level: VALUE

track: VALUE

duration: DURATION

effective accept

effective reject

end

class PAPER_SESSION persistent

inherit SESSION

feature

presentations: SET [PAPER]

invariant

for_all p member_of presentations it_holds

p .status .accepted /= Void

end

class SESSION

feature

chair: PERSON

code: VALUE

track: VALUE

start , end: DATE

conference_room: VALUE

invariant start < end

end

class TUTORIAL_SESSION persistent

inherit

SESSION

feature

lecture: TUTORIAL

invariant

lecture .status .accepted /= Void

end

PAPER inherit PRESENTATION

TUTORIAL inherit PRESENTATION

PAPER_SESSION inherit SESSION

TUTORIAL_SESSION inherit SESSION

PAPER client REVIEW

PRESENTATION client STATUS

PAPER_SESSION client PAPER

TUTORIAL_SESSION client TUTORIAL

end

Figure B.14 Technical_events (cf. figure 9.31)

TUTORIAL

DYNAMIC DIAGRAMS 375

static_diagram Technical_events

component

class REVIEW persistent

feature

reviewer: PERSON

score: VALUE

comments: TEXT

invariant

score member_of { ’A’ . . ’D’}

end

class STATUS persistent

feature

received: DATE

review_started: DATE

accepted: DATE

rejected: DATE

final_received: DATE

invariant

received <= review_started;

review_started <= final_received;

accepted = Void or rejected = Void

end

class PAPER persistent

inherit

PRESENTATION

feature

copyright_transferred: BOOLEAN

reviews: SET [REVIEW]

final_score: VALUE

award_best_paper

transfer_copyright

require

status .accepted /= Void

ensure

copyright_transferred

end

effective accept

effective reject

end

deferred class PRESENTATION

feature

code: VALUE

title: VALUE

authors: SET [PERSON]

status: STATUS

speakers: SET [PERSON]

deferred accept

ensure status .accepted /= Void end

deferred reject

ensure status .rejected /= Void end

invariant

for_all p , q: PRESENTATION such_that

p /= q it_holds p .code /= q .code and

p .title /= q .title

end

class TUTORIAL persistent

inherit PRESENTATION

feature

capacity: VALUE

attendee_count: VALUE

prerequisite_level: VALUE

track: VALUE

duration: DURATION

effective accept

effective reject

end

class PAPER_SESSION persistent

inherit SESSION

feature

presentations: SET [PAPER]

invariant

for_all p member_of presentations it_holds

p .status .accepted /= Void

end

class SESSION

feature

chair: PERSON

code: VALUE

track: VALUE

start , end: DATE

conference_room: VALUE

invariant start < end

end

class TUTORIAL_SESSION persistent

inherit

SESSION

feature

lecture: TUTORIAL

invariant

lecture .status .accepted /= Void

end

PAPER inherit PRESENTATION

TUTORIAL inherit PRESENTATION

PAPER_SESSION inherit SESSION

TUTORIAL_SESSION inherit SESSION

PAPER client REVIEW

PRESENTATION client STATUS

PAPER_SESSION client PAPER

TUTORIAL_SESSION client TUTORIAL

end

Figure B.14 Technical_events (cf. figure 9.31)

SESSION

DYNAMIC DIAGRAMS 375

static_diagram Technical_events

component

class REVIEW persistent

feature

reviewer: PERSON

score: VALUE

comments: TEXT

invariant

score member_of { ’A’ . . ’D’}

end

class STATUS persistent

feature

received: DATE

review_started: DATE

accepted: DATE

rejected: DATE

final_received: DATE

invariant

received <= review_started;

review_started <= final_received;

accepted = Void or rejected = Void

end

class PAPER persistent

inherit

PRESENTATION

feature

copyright_transferred: BOOLEAN

reviews: SET [REVIEW]

final_score: VALUE

award_best_paper

transfer_copyright

require

status .accepted /= Void

ensure

copyright_transferred

end

effective accept

effective reject

end

deferred class PRESENTATION

feature

code: VALUE

title: VALUE

authors: SET [PERSON]

status: STATUS

speakers: SET [PERSON]

deferred accept

ensure status .accepted /= Void end

deferred reject

ensure status .rejected /= Void end

invariant

for_all p , q: PRESENTATION such_that

p /= q it_holds p .code /= q .code and

p .title /= q .title

end

class TUTORIAL persistent

inherit PRESENTATION

feature

capacity: VALUE

attendee_count: VALUE

prerequisite_level: VALUE

track: VALUE

duration: DURATION

effective accept

effective reject

end

class PAPER_SESSION persistent

inherit SESSION

feature

presentations: SET [PAPER]

invariant

for_all p member_of presentations it_holds

p .status .accepted /= Void

end

class SESSION

feature

chair: PERSON

code: VALUE

track: VALUE

start , end: DATE

conference_room: VALUE

invariant start < end

end

class TUTORIAL_SESSION persistent

inherit

SESSION

feature

lecture: TUTORIAL

invariant

lecture .status .accepted /= Void

end

PAPER inherit PRESENTATION

TUTORIAL inherit PRESENTATION

PAPER_SESSION inherit SESSION

TUTORIAL_SESSION inherit SESSION

PAPER client REVIEW

PRESENTATION client STATUS

PAPER_SESSION client PAPER

TUTORIAL_SESSION client TUTORIAL

end

Figure B.14 Technical_events (cf. figure 9.31)

TUTORIAL_SESSION

DYNAMIC DIAGRAMS 375

static_diagram Technical_events

component

class REVIEW persistent

feature

reviewer: PERSON

score: VALUE

comments: TEXT

invariant

score member_of { ’A’ . . ’D’}

end

class STATUS persistent

feature

received: DATE

review_started: DATE

accepted: DATE

rejected: DATE

final_received: DATE

invariant

received <= review_started;

review_started <= final_received;

accepted = Void or rejected = Void

end

class PAPER persistent

inherit

PRESENTATION

feature

copyright_transferred: BOOLEAN

reviews: SET [REVIEW]

final_score: VALUE

award_best_paper

transfer_copyright

require

status .accepted /= Void

ensure

copyright_transferred

end

effective accept

effective reject

end

deferred class PRESENTATION

feature

code: VALUE

title: VALUE

authors: SET [PERSON]

status: STATUS

speakers: SET [PERSON]

deferred accept

ensure status .accepted /= Void end

deferred reject

ensure status .rejected /= Void end

invariant

for_all p , q: PRESENTATION such_that

p /= q it_holds p .code /= q .code and

p .title /= q .title

end

class TUTORIAL persistent

inherit PRESENTATION

feature

capacity: VALUE

attendee_count: VALUE

prerequisite_level: VALUE

track: VALUE

duration: DURATION

effective accept

effective reject

end

class PAPER_SESSION persistent

inherit SESSION

feature

presentations: SET [PAPER]

invariant

for_all p member_of presentations it_holds

p .status .accepted /= Void

end

class SESSION

feature

chair: PERSON

code: VALUE

track: VALUE

start , end: DATE

conference_room: VALUE

invariant start < end

end

class TUTORIAL_SESSION persistent

inherit

SESSION

feature

lecture: TUTORIAL

invariant

lecture .status .accepted /= Void

end

PAPER inherit PRESENTATION

TUTORIAL inherit PRESENTATION

PAPER_SESSION inherit SESSION

TUTORIAL_SESSION inherit SESSION

PAPER client REVIEW

PRESENTATION client STATUS

PAPER_SESSION client PAPER

TUTORIAL_SESSION client TUTORIAL

end

Figure B.14 Technical_events (cf. figure 9.31)

PAPER_SESSION

DYNAMIC DIAGRAMS 375

static_diagram Technical_events

component

class REVIEW persistent

feature

reviewer: PERSON

score: VALUE

comments: TEXT

invariant

score member_of { ’A’ . . ’D’}

end

class STATUS persistent

feature

received: DATE

review_started: DATE

accepted: DATE

rejected: DATE

final_received: DATE

invariant

received <= review_started;

review_started <= final_received;

accepted = Void or rejected = Void

end

class PAPER persistent

inherit

PRESENTATION

feature

copyright_transferred: BOOLEAN

reviews: SET [REVIEW]

final_score: VALUE

award_best_paper

transfer_copyright

require

status .accepted /= Void

ensure

copyright_transferred

end

effective accept

effective reject

end

deferred class PRESENTATION

feature

code: VALUE

title: VALUE

authors: SET [PERSON]

status: STATUS

speakers: SET [PERSON]

deferred accept

ensure status .accepted /= Void end

deferred reject

ensure status .rejected /= Void end

invariant

for_all p , q: PRESENTATION such_that

p /= q it_holds p .code /= q .code and

p .title /= q .title

end

class TUTORIAL persistent

inherit PRESENTATION

feature

capacity: VALUE

attendee_count: VALUE

prerequisite_level: VALUE

track: VALUE

duration: DURATION

effective accept

effective reject

end

class PAPER_SESSION persistent

inherit SESSION

feature

presentations: SET [PAPER]

invariant

for_all p member_of presentations it_holds

p .status .accepted /= Void

end

class SESSION

feature

chair: PERSON

code: VALUE

track: VALUE

start , end: DATE

conference_room: VALUE

invariant start < end

end

class TUTORIAL_SESSION persistent

inherit

SESSION

feature

lecture: TUTORIAL

invariant

lecture .status .accepted /= Void

end

PAPER inherit PRESENTATION

TUTORIAL inherit PRESENTATION

PAPER_SESSION inherit SESSION

TUTORIAL_SESSION inherit SESSION

PAPER client REVIEW

PRESENTATION client STATUS

PAPER_SESSION client PAPER

TUTORIAL_SESSION client TUTORIAL

end

Figure B.14 Technical_events (cf. figure 9.31)

BON Tools

• EiffelStudio

• The BON Visio Templates

• BON-CASE

• The BON Tool Suite

• Class Skeletons, Javadoc, and JML

• The BONc Tool (new!)

Part V:
Applying BON to

Java and JML

Using Code Skeletons
for BON and DBC

• rather than using a specification language,
one can use a programming language for
analysis and design

• code skeletons are used to sketch out
concepts and define class interfaces

• language-specific tools are used to annotate
higher-level ideas and lower-level contracts

Java Tools

• structured Javadoc comments are used to
annotate classes and features

• the Java Modeling Language (JML) is used to
annotate the Java with formal models and
contracts

• the JML tool suite and ESC/Java2 are used
to runtime check contracts, unit test, and
statically check code against specifications

Our Running Example

• we will use the CITIZEN/NOBLEPERSON
examples from the BON book

• each chart is written as a Javadoc-
annotated class skeleton

• each interface specification is written as a
JML-annotated class skeleton

• the implementation is written in Java

Informal Charts:
CITIZEN34 THE STATIC MODEL—CLASSES AND CLUSTERS

CLASS CITIZEN Part: 1/1

TYPE OF OBJECT
Person born or living in a country

INDEXING
cluster: CIVIL_STATUS
created: 1993-03-15 jmn
revised: 1993-05-12 kw

Queries Name, Sex, Age, Single, Spouse, Children, Parents,
Impediment to marriage

Commands Marry. Divorce.

Constraints Each citizen has two parents.
At most one spouse allowed.
May not marry children or parents or person of same sex.
Spouse’s spouse must be this person.
All children, if any, must have this person among their parents.

CLASS NOBLEPERSON Part: 1/1

TYPE OF OBJECT
Person of noble rank

INDEXING
cluster: CIVIL_STATUS
created: 1993-03-15 jmn
revised: 1993-05-12 kw, 1993-12-10 kw

Inherits from CITIZEN

Queries Assets, Butler

Constraints Enough property for independence.
Can only marry other noble person.
Wedding celebrated with style.
Married nobility share their assets and must have a butler.

Figure 3.3 Class charts: types of citizen

the class. Keywords for version control have been added to the indexing clause,

since classes represent the evolving basic components of a system (keeping track

of changes to clusters is usually not very interesting). After the chart header a

number of dynamic entries follow, specified only when non-empty:

• Inherits from

– lists classes that are direct ancestors to this class.

• Queries

– lists applicable queries (value return; may not change system state).

• Commands

– lists applicable commands (no value return; may change system state).

Informal Charts in Java:
Citizen

/**
 * Person born or living in a country.
 *
 * @created 1993-03-15 jmn
 * @revised 1993-05-12 kw
 *
 */
package civil_status;

class Citizen {
 /** @bon Name? */
 ...
 /** @bon Marry. */
 ...
 /** @bon Each citizen has two
parents. */
}

Informal Charts:
NOBLEPERSON

34 THE STATIC MODEL—CLASSES AND CLUSTERS

CLASS CITIZEN Part: 1/1

TYPE OF OBJECT
Person born or living in a country

INDEXING
cluster: CIVIL_STATUS
created: 1993-03-15 jmn
revised: 1993-05-12 kw

Queries Name, Sex, Age, Single, Spouse, Children, Parents,
Impediment to marriage

Commands Marry. Divorce.

Constraints Each citizen has two parents.
At most one spouse allowed.
May not marry children or parents or person of same sex.
Spouse’s spouse must be this person.
All children, if any, must have this person among their parents.

CLASS NOBLEPERSON Part: 1/1

TYPE OF OBJECT
Person of noble rank

INDEXING
cluster: CIVIL_STATUS
created: 1993-03-15 jmn
revised: 1993-05-12 kw, 1993-12-10 kw

Inherits from CITIZEN

Queries Assets, Butler

Constraints Enough property for independence.
Can only marry other noble person.
Wedding celebrated with style.
Married nobility share their assets and must have a butler.

Figure 3.3 Class charts: types of citizen

the class. Keywords for version control have been added to the indexing clause,

since classes represent the evolving basic components of a system (keeping track

of changes to clusters is usually not very interesting). After the chart header a

number of dynamic entries follow, specified only when non-empty:

• Inherits from

– lists classes that are direct ancestors to this class.

• Queries

– lists applicable queries (value return; may not change system state).

• Commands

– lists applicable commands (no value return; may change system state).

Informal Charts in Java:
Nobleperson

/**
 * Person of noble rank.
 *
 * @created 1993-03-15 jmn
 * @revised 1993-05-12 kw, 1993-12-10 kw
 */
package civil_status;

class Nobleperson extends Citizen {
 /** @bon Assets? */
 ...
 /** @bon Enough property for independence. */
}

Formal Specification:
Graphical BONCLASS FEATURES 45

CITIZEN *

name , sex , age: VALUE

spouse: CITIZEN
!! Husband or wife

children , parents: SET [CITIZEN]
!! Close relatives, if any

single: BOOLEAN
!! Is this citizen single?

! Result ! spouse = "

marry*

!! Celebrate the wedding.
– sweetheart: CITIZEN

? sweetheart # " and

can_marry (sweetheart)

! spouse = sweetheart

can_marry: BOOLEAN
!! No legal hindrance?

– other: CITIZEN

? other # "

! Result $ (single and other .single

and other % children

and other % parents

and sex # other .sex)

divorce
!! Admit mistake.

? ¬ single

! single and (old spouse).single

Invariant

single or spouse .spouse = @;

parents .count = 2;

& c ' children • ((p ' c .parents • p = @)

NOBLEPERSON +

Inherits: CITIZEN

assets: NUMERIC
!! The bare necessities of life

butler: CITIZEN
!! Irons the morning paper

spouse++: NOBLEPERSON
!! Lord or Lady

marry+

!! Celebrate with style.
– fiancee: NOBLEPERSON

! butler # ";

assets) old assets + fiancee .assets

! $50 ,000

Figure 3.12 Equivalent specification using graphical BON

of CITIZEN. (In figure 3.12, this may also be seen from the single arrow which,
as we shall see in the next chapter, represents the inheritance relation.)

The first two features of NOBLEPERSON represent necessary extensions: an
assets feature of type NUMERIC (absolutely essential, considering the ridiculous
prices charged for good hunting grounds these days), and the obligatory

Formal Specification:
Graphical BON

CLASS FEATURES 45

CITIZEN *

name , sex , age: VALUE

spouse: CITIZEN
!! Husband or wife

children , parents: SET [CITIZEN]
!! Close relatives, if any

single: BOOLEAN
!! Is this citizen single?

! Result ! spouse = "

marry*

!! Celebrate the wedding.
– sweetheart: CITIZEN

? sweetheart # " and

can_marry (sweetheart)

! spouse = sweetheart

can_marry: BOOLEAN
!! No legal hindrance?

– other: CITIZEN

? other # "

! Result $ (single and other .single

and other % children

and other % parents

and sex # other .sex)

divorce
!! Admit mistake.

? ¬ single

! single and (old spouse).single

Invariant

single or spouse .spouse = @;

parents .count = 2;

& c ' children • ((p ' c .parents • p = @)

NOBLEPERSON +

Inherits: CITIZEN

assets: NUMERIC
!! The bare necessities of life

butler: CITIZEN
!! Irons the morning paper

spouse++: NOBLEPERSON
!! Lord or Lady

marry+

!! Celebrate with style.
– fiancee: NOBLEPERSON

! butler # ";

assets) old assets + fiancee .assets

! $50 ,000

Figure 3.12 Equivalent specification using graphical BON

of CITIZEN. (In figure 3.12, this may also be seen from the single arrow which,
as we shall see in the next chapter, represents the inheritance relation.)

The first two features of NOBLEPERSON represent necessary extensions: an
assets feature of type NUMERIC (absolutely essential, considering the ridiculous
prices charged for good hunting grounds these days), and the obligatory

Formal Specification in
BON: CITIZENCLASS FEATURES 43

deferred class CITIZEN
feature

name , sex , age: VALUE

spouse: CITIZEN !! Husband or wife

children , parents: SET [CITIZEN] !! Close relatives, if any

single: BOOLEAN !! Is this citizen single?
ensure

Result <!> spouse = Void
end

deferred marry !! Celebrate the wedding.
!> sweetheart: CITIZEN
require

sweetheart /= Void and can_marry (sweetheart)
ensure

spouse = sweetheart
end

can_marry: BOOLEAN !! No legal hindrance?
!> other: CITIZEN
require

other /= Void
ensure

Result !> (single and other .single
and other not member_of children
and other not member_of parents
and sex /= other .sex)

end

divorce !! Admit mistake.
require

not single
ensure

single and (old spouse).single
end

invariant
single or spouse .spouse = Current;
parents .count = 2;
for_all c member_of children it_holds

(exists p member_of c .parents it_holds p = Current)
end !! class CITIZEN

Figure 3.10 Formal specification using textual BON

Then a query follows whose BOOLEAN result tells whether the current citizen

is single or not. The semantics of the feature is specified through a

postcondition. The condition states that the return value of single will be true if

and only if spouse returns Void (no spouse object attached to current citizen).

Result is a predefined variable carrying the return value of a query. The symbols
! and " stand for equivalence and void reference respectively (see figure 3.13).

The next public feature is marry , a deferred command (shown by an asterisk

in figure 3.12) that returns no value, but instead alters the object state. It requires

Formal Specification in
JML: Citizen

abstract class Citizen {
 private Value name,sex,age;
 /** Husband or wife */
 private Citizen spouse;
 /** Close relatives, if any */
 private Set[Citizen] children, parents;
 /** Is this citizen single? */
 //@ invariant single <==> spouse == null;
 private boolean single;

 /** Celebrate the wedding. */
 //@ requires sweetheart != null;
 //@ requires can_marry(sweetheart);
 //@ ensures spouse == sweetheart;
 abstract void marry(Citizen sweetheart);
 ...

Formal Specification in
BON: CITIZEN

CLASS FEATURES 43

deferred class CITIZEN
feature

name , sex , age: VALUE

spouse: CITIZEN !! Husband or wife

children , parents: SET [CITIZEN] !! Close relatives, if any

single: BOOLEAN !! Is this citizen single?
ensure

Result <!> spouse = Void
end

deferred marry !! Celebrate the wedding.
!> sweetheart: CITIZEN
require

sweetheart /= Void and can_marry (sweetheart)
ensure

spouse = sweetheart
end

can_marry: BOOLEAN !! No legal hindrance?
!> other: CITIZEN
require

other /= Void
ensure

Result !> (single and other .single
and other not member_of children
and other not member_of parents
and sex /= other .sex)

end

divorce !! Admit mistake.
require

not single
ensure

single and (old spouse).single
end

invariant
single or spouse .spouse = Current;
parents .count = 2;
for_all c member_of children it_holds

(exists p member_of c .parents it_holds p = Current)
end !! class CITIZEN

Figure 3.10 Formal specification using textual BON

Then a query follows whose BOOLEAN result tells whether the current citizen

is single or not. The semantics of the feature is specified through a

postcondition. The condition states that the return value of single will be true if

and only if spouse returns Void (no spouse object attached to current citizen).

Result is a predefined variable carrying the return value of a query. The symbols
! and " stand for equivalence and void reference respectively (see figure 3.13).

The next public feature is marry , a deferred command (shown by an asterisk

in figure 3.12) that returns no value, but instead alters the object state. It requires

Formal Specification in
JML: Citizen

/** No legal hinderance? */
/*@ requires other != null;
 @ ensures \result <==> (single &
 @ other.single &
 @ !children.has(other) &
 @ !parents.has(other) &
 @ sex != other.sex);
 @*/
abstract boolean can_marry(Citizen other);

/** Admit mistake. */
/*@ requires !single;
 @ ensures single & \old(spouse.single);
 @*/
abstract void divorce();

Formal Invariant in
BON and JML

CLASS FEATURES 43

deferred class CITIZEN
feature

name , sex , age: VALUE

spouse: CITIZEN !! Husband or wife

children , parents: SET [CITIZEN] !! Close relatives, if any

single: BOOLEAN !! Is this citizen single?
ensure

Result <!> spouse = Void
end

deferred marry !! Celebrate the wedding.
!> sweetheart: CITIZEN
require

sweetheart /= Void and can_marry (sweetheart)
ensure

spouse = sweetheart
end

can_marry: BOOLEAN !! No legal hindrance?
!> other: CITIZEN
require

other /= Void
ensure

Result !> (single and other .single
and other not member_of children
and other not member_of parents
and sex /= other .sex)

end

divorce !! Admit mistake.
require

not single
ensure

single and (old spouse).single
end

invariant
single or spouse .spouse = Current;
parents .count = 2;
for_all c member_of children it_holds

(exists p member_of c .parents it_holds p = Current)
end !! class CITIZEN

Figure 3.10 Formal specification using textual BON

Then a query follows whose BOOLEAN result tells whether the current citizen

is single or not. The semantics of the feature is specified through a

postcondition. The condition states that the return value of single will be true if

and only if spouse returns Void (no spouse object attached to current citizen).

Result is a predefined variable carrying the return value of a query. The symbols
! and " stand for equivalence and void reference respectively (see figure 3.13).

The next public feature is marry , a deferred command (shown by an asterisk

in figure 3.12) that returns no value, but instead alters the object state. It requires

/*@ invariant single | spouse.spouse == this; */
/*@ invariant parents.count == 2; */
/*@ invariant (\forall Citizen c; children.has(c);
 @ (\exists Citizen p; parents.has(p);
 @ p == this;)); */

Formal Spec in BON:
NOBLEPERSON44 THE STATIC MODEL—CLASSES AND CLUSTERS

effective class NOBLEPERSON
inherit

CITIZEN
feature

assets: NUMERIC !! The bare necessities of life

butler: CITIZEN !! Irons the morning paper

redefined spouse: NOBLEPERSON !! Lord or Lady

effective marry !! Celebrate with style.
!> fiancee: NOBLEPERSON
ensure

butler /= Void;
assets <= old assets + fiancee .assets ! $50 ,000

end
end !! class NOBLEPERSON

Figure 3.11 Formal specification (continued)

an input argument (marked by an arrow) also of type CITIZEN. The formal
argument is named sweetheart, so that it can be referenced in the semantic
specification of the feature.

The precondition states that marry may only be invoked if there is a
sweetheart available, and there is no impediment to marriage between the two
parties. The postcondition asserts that unless legal reasons forbid, execution of
the command marry will indeed attach sweetheart as the spouse of the current
CITIZEN object.

Legal hindrance is defined by the next query, can_marry, which rules out
bigamy and incest and allows only heterosexual unions. It may only be called on
a non-void citizen. BON assertion expressions use the common syntax o .f (a , b)
to mean invocation of feature f on object o with input arguments a and b.

The feature divorce , which comes next, is also a command. It requires the
citizen to be non-single, so there will be somebody to divorce. The
postcondition then ensures that after the divorce, both parties will indeed be
single again.

To express this, we use the special symbol old, which refers to the value an
expression would have returned, had it been evaluated just before calling the
feature. The parentheses are used to alter operator precedence, so the feature
single is applied to the old spouse object, but with the current system state (after
execution of divorce). Writing old spouse .single would mean applying single to
the old spouse object with the old system state (before execution of divorce),
which would return false since the citizens were then still married.

We save the invariant for the next section, and turn to the second interface—
that of the class NOBLEPERSON. The class is effective (header marked with
plus symbol in the graphical form) and the inheritance clause shows it is a child

Formal Specification in
JML: Nobleperson

class Nobleperson extends Citizen {
 /** The bare necessities of life. */
 Numeric assets;
 /** Irons the morning paper. */
 Citizen butler;
 /** Lord or Lady */
 //@ invariant \typeof(spouse) == \type(Nobleperson);

 /** Celebrate with style. */
 //@ ensures butler != null;
 //@ ensures assets <= \old(assets + fiancee.assets - 50000);
 void marry(Nobleperson fiancee) {
 //@ assert false;
 }
}

Part VI:
Code Standards

and Metrics

Code Standards
• the “look and feel” of development artifacts

• includes program code, docs, scripts, etc.

• primary focus is on improving team
communication and comprehension

• team members focus their attention and
spend time on important things—not code
formatting or trivial design decisions

• helps with merging and maintenance

• standard are automatically checked

http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/

Structural Standards
• small-scale structure

• code indentation

• block placement

• identifier naming

• method ordering

• large-scale structure

• package and module structuring

• design patterns and anti-patterns

Example Use
of Standard

class Citizen
{
 /** The spouse of this Citizen; if null, this citizen
 is single. */
 Citizen my_spouse = null;
 //@ invariant (my_spouse != null) ==>
 //@ my_spouse.my_spouse == this;

 /** Constructs a new Citizen object who is single. */
 //@ ensures single();
 Citizen() {
 my_spouse = null;
 }
 ...

Some Basic Rules of
Good Programming

• simple (even trivial!) constructors

• focus on data abstraction

• appropriate levels of visibility

• work from tight (private) to loose (public)

• short method signatures

• no globals and few static or class variables

• avoid concurrency at all costs

The KindSoftware
Coding Standard

• the “gold standard” of coding standards

• used in dozens of companies and groups
around the world

• e.g,. influenced coding standard at Sun

• written as generic rules with specific
application to Java and Eiffel

• http://kind.ucd.ie/documents/whitepapers/
code_standards/

http://kind.ucd.ie/documents/whitepapers/code_standards/
http://kind.ucd.ie/documents/whitepapers/code_standards/
http://kind.ucd.ie/documents/whitepapers/code_standards/
http://kind.ucd.ie/documents/whitepapers/code_standards/

Metrics
• provide quantitative (but “fuzzy”) analysis of

software artifacts

• generated numbers mean absolutely nothing
in almost all cases

• they are only valuable in a relative context

• dozens (hundreds?) of metrics have been
invented but very few are seriously used

• usually the worst metrics are the ones heard
about most often (e.g., KLOC)

Standard Metrics

• lines of code (LOC, KLOC, MLOC)

• effectively means “count the semicolons,”
not the curly braces

• counts real statements, declarations, etc.

• lines of comments/docs (LOD, KLOD, etc.)

• counts lines of real comments

• count clauses or measure information
complexity of documentation

Standard
Non-Trivial Metrics

• cyclomatic code complexity

• roughly counts the number of execution
paths through code

• CC = E - N + 2p, where

E = the number of edges of the graph

N = the number of nodes of the graph

p = the number of connected components

http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html
http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html

CC Example

CC Evaluation

Cyclomatic
Complexity

Risk Evaluation for
Expert Programmers

1-10 a simple program, low risk

11-20 more complex, moderate risk

21-50 complex, high risk

>50 untestable, very high risk

Other Popular Metrics

Complexity Measure Primary Measure of

Halstead
Algorithmic complexity, measured

by counting operators and operands

Henry and Kafura
Coupling between modules

(parameters, global variables, calls)

Bowles
Module and system complexity; coupling

via parameters and global variables

Troy and Zweben
Modularity or coupling; complexity of

structure (maximum depth of structure
chart); calls-to and called-by

Ligier Modularity of the structure chart

Doc and Spec Coverage
•documentation coverage

•ensure all modules, methods, and
attributes are documented appropriately

•i.e., no Javadoc warnings whatsoever

•specification coverage—at least one...

•invariant per attribute/field

•precondition per method parameter

•postcondition per method

•assertion per branch in body

Unit Testing
Code Coverage

• desire that tests exercise all execution
paths in your code

• every branch, try/catch, switch case, etc.

• tools exist that measure code coverage
while the program runs its unit tests

• 100% coverage is ideal but rarely met

• 80-90% coverage is realistic with effort

Popular Java Code
Coverage Tools

• Emma - scalable bytecode instrumentation

• included with Eclipse installed on server

• Quilt - extended classloader; optimized for
JUnit, Ant, and Maven

• Hansel - extended classloader

• Gretel - bytecode recompilation

• GroboUtils - extended classloader

http://emma.sourceforge.net/
http://emma.sourceforge.net/
http://quilt.sourceforge.net/
http://quilt.sourceforge.net/
http://hansel.sourceforge.net/
http://hansel.sourceforge.net/
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/Gretel/
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/Gretel/
http://groboutils.sourceforge.net/
http://groboutils.sourceforge.net/

Simple Assessment of
Software Quality

• ensure assessment in all programming-
related assignments is directly coupled with
these three forms of simple (sometimes
static) checking

• system’s code, docs, and specs must
conform to the provided coding standard
and metrics and coverage guidelines

• concrete guidelines are built-in to the
environment and/or provided

Part VII:
Static Analysis for

Software Construction

Static Analysis

• static and dynamic are duals

• dynamic analysis means examining an
artifact as it changes

• e.g., watch a program as it executes

• static analysis means examining an artifact
when it does not change, in the context of its
meaning and purpose

Common Kinds of
Static Analysis

• typechecking

• source code programming standards

• documentation standards

• metrics guidelines

• unit test coverage guidelines

• null pointer analysis

• checking for good programming idioms/
patterns and poor use of anti-patterns

Code Standard Example

Code Standard Example

class Citizen {
 /** The spouse of this Citizen; if null, this citizen
 is single. */
 Citizen my_spouse;

 /** Returns a new citizen who is single. */
 Citizen();
 ...

Code Standard Example

class Citizen
{
 /** The spouse of this Citizen; if null, this citizen
 is single. */
 Citizen my_spouse;

 /** Returns a new citizen who is single. */
 Citizen();
 ...

Code Standard Example

Documentation Example
 /** The spouse of this Citizen; if null, this citizen
 is single. */
 Citizen my_spouse;

 /** Returns a new citizen who is single. */
 Citizen();

 /** @return this citizen’s name. */
 String name();

 /** Sets this citizen’s age.
 * @param new_age the new age of this citizen.
 */
 void age(byte new_age);
 ...

Specification Example
class Citizen
{
 /** The spouse of this Citizen; if null, this citizen
 is single. */
 /*@ nullable @*/ Citizen my_spouse = null;
 //@ invariant (my_spouse != null) ==>
 //@ my_spouse.my_spouse == this;

 /** Returns a new citizen who is single. */
 //@ ensures single();
 Citizen() {
 my_spouse = null;
 }
 ...

Trivial Static Checking

• lexical analysis only

• scan/lex source code

• typically keep only a small amount of
contextual information

• check each construct on the fly

• e.g., pattern match on strings

Syntactic Static Analysis

• scan and parse (parts of) a program

• generate AST for structures of interest

• walk over AST, pattern matching on
interesting structures

• analyze each match for properties of
interest, usually with a simple algorithm

• report results to user

Semantic Static Analysis
• scan, parse, and generate AST as before

• transform AST into an intermediate
representation amendable to analysis

• e.g., reduced language, guarded command
language, static single assignment form

• analyze this representation semantically,
generate verification conditions that
logically express properties of interest

• give VCs to a theorem prover for checking

• interpret prover response for programmer

Static Checkers
Included in CSI Eclipse
• CheckStyle - source and docs style checker

• Metrics - source-based metrics analysis

• PMD - source-based good/bad patterns

• FindBugs - bytecode-based patterns

• EclEmma - unit test code coverage

• ESC/Java2 - common programming errors

Grading with Checkers
• project’s are partially graded based upon

how well documentation, specifications, and
code pass static checkers

• essentially, always try to ensure that there
are no errors or warnings

• code conforms to specified style

• metrics guidelines are followed

• no PMD or FindBugs markers

• no typechecking errors from JML checker

• no warnings from ESC/Java2

Part VIII:
Models are the

‘M’ in JML
Using ADT Models in

Formal Specification with JML

Models, not Modeling

• the ‘M’ in JML is not the same as the ‘M’ in
UML, even if both use the term ‘model’

• JML models are mathematical abstractions

• UML models are pretty pictures

• JML models are used to specify abstract
behavior independent of implementation

• an implementation realizes a model and is
verified as fulfilling the model

Standard Models

• standard mathematical models include:

• bag, list, map, pair, relation, sequence, set

• variants exist for values and objects

• standard Java models include:

• Byte, Char, Double, Float, Integer, Long,
Short, String, Type

• Collection, Comparable, Enumeration,
Iterator

Mathematical Models

• each model is realized by one Java class

• see the package org.jmlspecs.models

• all methods of all models are functional

• each model has a full specification

• spec is in OO/ADT style

• algebraic equational axiomatic spec

• NB no models have been verified yet!

Java Models

• all core classes have models

• some of these models are quite simple
(e.g., Byte, Char, Integer, and String)

• others are quite complicated

(e.g., Double and Float)

Using Models

• models are used by declaring model fields

• one can also declare model methods

• in specifications, models are used in lieu of
concrete fields when at all possible

• in implementations, models are bound to
implementations with a represents clause

• representations can be concrete fields or
abstract pure method invocations

Example Models:
JMLString

public /*@ pure @*/ class JMLString
 implements JMLComparable {

 /** The contents of this object. */
 //@ public model String theString;
 //@ public invariant theString != null;

 protected String str_;
 //@ in theString;
 //@ protected represents theString <- str_;

 //@ protected invariant str_ != null;

Example Models:
JMLInteger

public /*@ pure @*/ class JMLInteger
 implements JMLComparable {

 /** The integer value of this object. */
 //@ public model int theInt;

 //@ public constraint theInt == \old(theInt);

 private int intValue;
 //@ in theInt;
 //@ private represents theInt <- intValue;

JMLInteger’s
remainderBy()

/**
 * Return a new object containing the remainder of
 * this object's integer value divided by that of
 * the given argument.
 */
/*@ public normal_behavior
 @ requires i2 != null && !i2.equals(new JMLInteger(0));
 @ ensures \result != null
 @ && \result.theInt == theInt % i2.theInt;
 @*/
public /*@ non_null @*/
 JMLInteger remainderBy(/*@ non_null @*/ JMLInteger i2) {
 //@ assume i2.intValue != 0;
 return new JMLInteger(intValue % i2.intValue);
}

Issues with Models
• awkward to use

• all operators are functional and are
methods, thus an unfamiliar prefix-
notation is necessary

• all mathematical models are
parameterized on a type, but since Java
<=1.5 has no parameterized classes,
casting is frequent

• execution speed with jmlrac is very slow

• particularly true of mathematical models

Verifying with Models
• models with built-in types and functional

representations work in ESC/Java2

• small models with richer types and
functional representations sometimes work

• primarily complexity issue with Simplify

• medium to large models with richer types
do not work at all

• currently revising core specifications to
match ESC/Java2’s current capabilities

