The ESC/Java2 tool
ESC/Java?

Use and Features
David Cok, Joe Kiniry, Erik Poll

Eastman Kodak Company, University College Dublin,
and Radboud University Nijmegen

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.1/?? David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Ti

Structure of ESC/Java2 Running ESC/Java2
ESC/Java2 consists of a e Download the binary distribution from
® parsing phase (syntax checks), http://www.cs.kun.nl/sos/research/escjava
® typechecking phase (type and usage checks), e Untar the distribution and follow the instructions in
* static checking phase (reasoning to find potential README.release about setting environment variables.
bugs) - runs a behind-the-scenes prover called e Run the tool by doing one of the following:
Simplify * Run a script in the release: escjava?2 or escj.bat
Parsing and typechecking produce cautions or errors. ® Run the tool directly with java -cp esctools2.jar

escjava.Main , but then you need to be sure to
provide values for the -simplify and -specs options.
® Run a GUI version of the tool by double-clicking the
release version of esctools2.jar
® Run a GUI version of the tool by executing it with
java -jar esctools2.jar (in which case you can add
options).

Static checking produces warnings .

The focus of ESC/Javaz2 is on static checking, but
reports of bugs, unreported errors, confusing
messages, documentation or behavior, and even just
email about your application and degree of success are
Very Welcome. [and Caution: this is still an alpha
release]

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.3/?? David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tt

Supportied platiorms

ESC/Java2 is supported on
e Linux
e MacOSX
e Cygwin on Windows

Windows (but there are some environment issues still
to be resolved)

e Solaris (in principle - we are not testing there)

Note that the tool itself is relatively portable Java, but the
underlying prover is a Modula-3 application that must be
compiled and supplied for each platform.

Help with platform-dependence issues is welcome.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.5/??

Command-line options

The items on the command-line are either options and their
arguments or input entries. Some commonly used options
(see the documentation for more):

e -help - prints a usage message

e -quiet - turns off informational messages (e.g. progress messages)

e -nowarn - turns off a warning

e -classpath - sets the path to find referenced classes [best if it contains |
® -specs - sets the path to library specification files

e -simplify - provides the path to the simplify executable

e -f -the argument is a file containing command-line arguments

e -nocheck - parse and typecheck but no verification

e -routine - restricts checking to a single routine

e -eajava, -eajml - enables checking of Java assertions

e -counterexample - gives detailed information about a warning

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.7/2?

Environment

The application relies on the environment having

e a Simplify executable (such as Simplify-1.5.4.macosx)
for your platform, typically in the same directory as the
application’s jar file;

e the SIMPLIFY environment variable set to the name of
the executable for this platform;

e a set of specifications for Java system files - by default
these are bundled into the application jar file, but they
are also in jmispecs.jar .

e The scripts prefer that the variable
ESCTOOLS RELEASE be set to the directory
containing the release.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML T

Input entries

The input entries on the command-line are those classes
that are actually checked. Many other classes may be
referenced for class definitions or specifications - these are
found on the classpath (or sourcepath or specspath).

e file names - of java or specification files (relative to the
current directory)

directories - processes all java or specification files
(relative to the current directory)

package - (fully qualified name) - found on the classpath

class - (fully qualified name) - found on the classpath

list - (prefaced by -list) - a file containing input entries

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML T

SpPeECIHication Ties

e Specifications may be added directly to .java files

e Specifications may alternatively be added to
specification files.

No method bodies
No field initializers
Recommended suffix: .refines-java

Recommend a refines annotation (see

documentation)
Must also be on the classpath

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.9/??

Bag demo

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.11/??

SpPeEcCIHication Tie exampie

package java.l ang;

inmport java.lang.reflect.*;

inmport java.io.lnputStream

public final class Class inplenments java.io.Serializable {

private dass();

/+*@al so public nornmal _behavi or

@ ensures \result !'= null &% !'\result.equal s("")
@ &% (* \result is the nane of this class object *);
@/

public /*@pure @/ String toString();

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tut

modular reasoning

ESC/Java2 reasons about every method individually. So in

class A{
byte[] b;
public void n() { b = new byte[20]; }

public void m() { n();
b[0] = 2;

}
ESC/Java2 warns that b[0] may be a null dereference here,

even though you can see that it won't be.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tut

moaular reasonin

To stop ESC/Java2 complaining: add a postcondition

class A{

byte[] b;

/[l @ensures b !'= null & b.length = 20;
public void n() { a = new byte[20]; }
public void m() { n();

b[0] = 2;
}

So: property of method that is relied on has to be made
explicit.

Also: subclasses that override methods have to preserve
these.

David Cok, Joe Kiniry & Erik Poll - ESC/J:

modular reasonin

To stop ESC/Java2 complaining here: add an invariant
class A{
byte[] b;
/[l@invariant b !'= null && b.length == 20;
/'l or weaker property for b.length ?
public void A() { b = new byte[20]; }
public void m() { b[0] = 2;
}

So again: properties you rely on have to be made explicit.

And again: subclasses have to preserve these properties.

David Cok, Joe Kiniry & Erik Poll - ESC/J:

9

lava2 & JML Tutorial — p.13/??

g

lava2 & JML Tutorial — p.15/2?

maoduiar reasoning

Similarly, ESC/Java will complain about
class A{
byte[] b;
public void A() { b = new byte[20]; }
public void m() { b[0] = 2;
}

b[0] = 2in

Maybe you can see that this is a spurious warning, though
this will be harder than in the previous example: you'll have
to inspect all constructors and all methods.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tut

assume

Alternative to stop ESC/Java2 complaining: add an
assumption:

/[l @assume b !'= null && b.length > 0;
b[0] = 2;

Especially useful during development, when you're still
trying to discover hidden assumptions, or when
ESC/Java2’s reasoning power is too weak.

(requi r es can be understood as a form of assune.)

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tut

need 1or assignapie Clauses needa 1or assignaplie Clauses

class A{

class A{
byte[] b;

byte[] b;
public void m() { ...
b = new byte[3];
/|l @assert b !'=null; // ok!
0. n(b);
/|l @assert b !'=null; // ok?

public void m() { ...
b = new byte[3];
/|l @assert b !'=null; // ok!
o.n(...);
/|l @assert b !'=null; // ok?

}

0. n to check the A detailed spec for 0. n might give a postcondition saying
that b is not null.

}

What does ESC/Java need to know about
second assert ?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.17/?? David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tut

need for assignable clauses

class A{
byte[] b;

public void m() { ...
b = new byte[3];
/[l @assert b !'=null; // ok!

0.n();
[l @assert b !'=null; // ok?

}

If the postcondition of 0. n doesn't tellus b won’t be not
null — and can’t be expected to — we need the assi gnhabl e
clause to tell us that 0. n won't affect b.

Declaring o. n as pure would solve the problem.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.19/??

	
	Structure of ESC/Java2
	Running ESC/Java2
	Supported platforms
	Environment
	Command-line options
	Input entries
	Specification files
	Specification file example
	Bag demo
	modular reasoning
	modular reasoning
	modular reasoning
	modular reasoning
	assume
	need for assignable clauses
	need for assignable clauses
	need for assignable clauses

