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Structure of ESC/Java2 Running ESC/Java2
ESC/Java2 consists of a e Download the binary distribution from
® parsing phase (syntax checks), http://www.cs.kun.nl/sos/research/escjava
® typechecking phase (type and usage checks), e Untar the distribution and follow the instructions in
* static checking phase (reasoning to find potential README.release about setting environment variables.
bugs) - runs a behind-the-scenes prover called e Run the tool by doing one of the following:
Simplify * Run a script in the release:  escjava?2 or escj.bat
Parsing and typechecking produce  cautions or errors. ® Run the tool directly with  java -cp esctools2.jar

escjava.Main , but then you need to be sure to
provide values for the -simplify and -specs options.
® Run a GUI version of the tool by double-clicking the
release version of esctools2.jar
® Run a GUI version of the tool by executing it with
java -jar esctools2.jar (in which case you can add
options).

Static checking produces warnings .

The focus of ESC/Javaz2 is on static checking, but
reports of bugs, unreported errors, confusing
messages, documentation or behavior, and even just
email about your application and degree of success are
Very Welcome. [and Caution: this is still an alpha
release]

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial — p.3/?? David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tt



Supportied platiorms

ESC/Java2 is supported on
e Linux
e MacOSX
e Cygwin on Windows

Windows (but there are some environment issues still
to be resolved)

e Solaris (in principle - we are not testing there)

Note that the tool itself is relatively portable Java, but the
underlying prover is a Modula-3 application that must be
compiled and supplied for each platform.

Help with platform-dependence issues is welcome.
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Command-line options

The items on the command-line are either options and their
arguments or input entries. Some commonly used options
(see the documentation for more):

e -help - prints a usage message

e -quiet - turns off informational messages (e.g. progress messages )

e -nowarn - turns off a warning

e -classpath - sets the path to find referenced classes [best if it contains |
® -specs - sets the path to library specification files

e -simplify - provides the path to the simplify executable

e -f -the argument is a file containing command-line arguments

e -nocheck - parse and typecheck but no verification

e -routine - restricts checking to a single routine

e -eajava, -eajml - enables checking of Java assertions

e -counterexample - gives detailed information about a warning
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Environment

The application relies on the environment having

e a Simplify executable (such as Simplify-1.5.4.macosx)
for your platform, typically in the same directory as the
application’s jar file;

e the SIMPLIFY environment variable set to the name of
the executable for this platform;

e a set of specifications for Java system files - by default
these are bundled into the application jar file, but they
are also in jmispecs.jar .

e The scripts prefer that the variable
ESCTOOLS RELEASE be set to the directory
containing the release.
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Input entries

The input entries on the command-line are those classes
that are actually checked. Many other classes may be
referenced for class definitions or specifications - these are
found on the classpath (or sourcepath or specspath).

e file names - of java or specification files (relative to the
current directory)

directories - processes all java or specification files
(relative to the current directory)

package - (fully qualified name) - found on the classpath

class - (fully qualified name) - found on the classpath

list - (prefaced by -list) - a file containing input entries
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SpPeECIHication Ties

e Specifications may be added directly to .java files

e Specifications may alternatively be added to
specification files.

No method bodies
No field initializers
Recommended suffix: .refines-java

Recommend a refines annotation (see

documentation)
Must also be on the classpath
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Bag demo
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SpPeEcCIHication Tie exampie

package java.l ang;

inmport java.lang.reflect.*;

inmport java.io.lnputStream

public final class Class inplenments java.io.Serializable {

private dass();

/+*@al so public nornmal _behavi or

@ ensures \result !'= null &% !'\result.equal s("")
@ &% (* \result is the nane of this class object *);
@/

public /*@pure @/ String toString();
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modular reasoning

ESC/Java2 reasons about every method individually. So in

class A{
byte[] b;
public void n() { b = new byte[20]; }

public void m() { n();
b[0] = 2;

}
ESC/Java2 warns that b[ 0] may be a null dereference here,

even though you can see that it won't be.
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moaular reasonin

To stop ESC/Java2 complaining: add a postcondition

class A{

byte[] b;

/[l @ensures b !'= null & b.length = 20;
public void n() { a = new byte[20]; }
public void m() { n();

b[0] = 2;
}

So: property of method that is relied on has to be made
explicit.

Also: subclasses that override methods have to preserve
these.
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modular reasonin

To stop ESC/Java2 complaining here: add an invariant
class A{
byte[] b;
/[l@invariant b !'= null && b.length == 20;
/'l or weaker property for b.length ?
public void A() { b = new byte[20]; }
public void m() { b[0] = 2;
}

So again: properties you rely on have to be made explicit.

And again: subclasses have to preserve these properties.
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maoduiar reasoning

Similarly, ESC/Java will complain about
class A{
byte[] b;
public void A() { b = new byte[20]; }
public void m() { b[0] = 2;
}

b[0] = 2in

Maybe you can see that this is a spurious warning, though
this will be harder than in the previous example: you'll have
to inspect all constructors and all methods.
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assume

Alternative to stop ESC/Java2 complaining: add an
assumption:

/[l @assume b !'= null && b.length > 0;
b[0] = 2;

Especially useful during development, when you're still
trying to discover hidden assumptions, or when
ESC/Java2’s reasoning power is too weak.

(requi r es can be understood as a form of assune.)
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need 1or assignapie Clauses needa 1or assignaplie Clauses

class A{

class A{
byte[] b;

byte[] b;
public void m() { ...
b = new byte[3];
/|l @assert b !'=null; // ok!
0. n(b);
/|l @assert b !'=null; // ok?

public void m() { ...
b = new byte[3];
/|l @assert b !'=null; // ok!
o.n(...);
/|l @assert b !'=null; // ok?

}

0. n to check the A detailed spec for 0. n might give a postcondition saying
that b is not null.

}

What does ESC/Java need to know about
second assert ?
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need for assignable clauses

class A{
byte[] b;

public void m() { ...
b = new byte[ 3];
/[l @assert b !'=null; // ok!

0.n();
[l @assert b !'=null; // ok?

}

If the postcondition of 0. n doesn't tellus b won’t be not
null — and can’t be expected to — we need the  assi gnhabl e
clause to tell us that 0. n won't affect b.

Declaring o. n as pure would solve the problem.
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