
This document contains a set of homework exercises for those that wish to learn JML and
ESC/Java2. It was begun by Joseph R. Kiniry <kiniry@acm.org> in May 2004 for the tutorial
“Design by Contract and Automatic Verification for Java with JML and ESC/Java2” presented at
ECOOP 2004 in Oslo, Norway in June 2004. This is edition $Revision: 1.13 $.

This document is still very much a work in progress. Suggestions and input are welcome.

JML and ESC/Java2 Homework Exercises
Learning JML and ESC/Java2 Through Example

Edition $Revision: 1.13 $, May 2004
These exercises use at least JML version 5.0rc1 and ESC/Java2 version 2.0a7.

Joseph R. Kiniry <kiniry@acm.org>

The JML and ESC/Java2 Homework Exercises are licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 2.0 license. See http://creativecommons.org/licenses/by-
nc-sa/2.0/

Copyright c© 2004 Joseph R. Kiniry

You are free:

• to copy, distribute, display, and perform the work

• to make derivative works

Under the following conditions:

• Attribution. You must give the original author credit.

• Noncommercial. You may not use this work for commercial purposes.

• Share Alike. If you alter, transform, or build upon this work, you may distribute
the resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this
work.

Any of these conditions can be waived if you get permission from the author.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code.

See http://creativecommons.org/licenses/by-nc-sa/2.0/legalcode

i

Table of Contents

Introduction . 2

Core JML Constructs. 3
Assertions . 3
Assumptions . 7
Ghost Variables . 11
Lightweight Contracts . 11

Preconditions . 11
Postconditions . 13
Exceptional (Abnormal) Postconditions . 13

Frame Axioms . 14
Data Groups . 16
Heavyweight Specifications . 17
Invariants . 17
Reasoning about Loops . 17
Aliasing . 17
Models . 17

Using JML and ESC/Java2 . 18
Specifying Abstract Classes and Interfaces . 18
Annotating Preexisting Java Code. 18
Annotating Preexisting APIs. 18
Designing by Contract . 18

Copying . 19

Index . 20

1

This set of homework problems focus on the use of JML in runtime assertion checking (with jmlc

and jmlrac) and static verification with ESC/Java2.

2

Introduction

The Java Modeling Language (JML) is a behavioral interface specification language that can be
used to specify the behavior of Java modules. It combines the “Design by Contract” approach
of Eiffel and the model-based specification approach of the Larch family of interface specification
languages with some elements of the refinement calculus.

The JML tool suite comes with a typechecker (jml), a compiler (jmlc), a runtime assertion
checker (jmlrac), a Javadoc-based documentation generator (jmldoc), a set of unit test tools
(jml-junit, jmlunit, jtest), and a specification skeleton generator and specification comparison
tool (jmlspec).

The JML tool suite is primarily the development of the JML project at Iowa State University, led
by Gary Leavens. http://www.jmlspecs.org/

Several other tools understand (often subsets of) JML:

• The Extended Static Checker for Java (ESC/Java version 1).
http://research.compaq.com/SRC/esc/

• The Open Source Extended Static Checker for Java (ESC/Java version 2, or ESC/Java2
for short) from the SoS Group at the University of Nijmegen and David Cok.
http://www.cs.kun.nl/sos/research/escjava/

• The LOOP compiler from the SoS Group at the University of Nijmegen.
http://www.cs.kun.nl/sos/

• The Daikon invariant detector from the Program Analysis Group at MIT.
http://pag.lcs.mit.edu/daikon/

• The ChAsE frame axiom checker from Lemme project at INRIA Sophia-Antipolis.
http://www-sop.inria.fr/lemme/verificard/modifSpec/index.html

• The JACK tool from Gemplus. http://www.gemplus.com/smart/r d/trends/jack.html

• The Bogor tool from the SpEx project at Kansas State University.
http://spex.projects.cis.ksu.edu/

This set of homework problems focus on the use of JML in runtime assertion checking (with jmlc

and jmlrac) and static verification with ESC/Java2.

3

Core JML Constructs

The following sections discuss all of the core constructs of JML with examples and exercises. It
is suggested that each exercise be completed in sequence, as the exercises build upon each other
in the order presented. I.e., [Problem two], page 5 builds on the knowledge that you gained in
[Problem one], page 4.

It is assumed that the reader has a basic understanding of the following notions: assertion, invari-
ant, specification, signature, class, and type.

It is also assumed that the reader has a good understanding of Java. If you want write a specification
of a method written in Java, you have to understand what the method does and what it is meant

to do. You cannot expect to write specifications for programs written in a language you do not
understand.

When working on these problems, do not attempt to obtain full verification completeness at the
cost of poor specifications. Understanding the limitations of ESC/Java2 and other JML-based tools
is part of the challenge of writing specifications and performing verfications today.

In particular, several classes or methods are reused through several problems. As new constructs
are introduced, and as your specifications become more rich (and thus, complete), more of your
code will verify. You should not expect all of your answers to fully verify until you have covered
all of the concepts discussed in this document.

Assertions

An assertion is a predicate that must always be true. Assertions are typically used for debugging
and (localized) documentation purposes.

In JML, an assertion statement has the form

assert-statement ::= assert expression [: expression] ;

(Note that all specifications of JML grammar in this document are highly simplified from the actual
JML grammar. Only the basic forms of each statement or clause are shown and are sufficient for
the purpose of this homework.)

The first expression is the predicate that must be true. The second (optional) expression must be
of type String. The value of this expression is printed by some tools when the assertion fails. (add
xrefs)

Beginning in Java 1.4, an assert keyword was introduced. The syntax of the Java assert statement
is the same as that of JML. (add xref)

Java’s semantics does not restrict either subexpression in its assert statement, so you can write
assert statements that have side-effects such as

int x;

x++;

assert (x++ == 2) : new String("This is a bad idea.");

This is a very bad idea, as it means that the behavior of your program changes whether you are
testing your assertions or not.

JML’s assert statement does not permit side effects in either subexpression.

Using runtime checking (with jmlc and jmlrac), JML and Java assert statements are tested at
runtime. Using ESC/Java, JML assert statements are proven at compile-time.

In ESC/Java2, Java assert statements are treated one of two ways. They are either

• Treated as Java assert statements using the -eajava or -javaAssertions (synonymous)
switches, or

• Treated as JML assert statements using the -eajml or -jmlAssertions (synonymous)
switches.

4

In the former case, a failed assertion has the semantics of

throw new AssertionError(second expression);

Thus, you are not reasoning about another potential runtime exception, as all subtypes of Error
are ignored by ESC/Java. (add xref)

Problem 1. Annotate the following code with Java assertions as indicated. The expression
P(a0,a1,...) means “replace this expression with a predicate that is true of the variables a0

and a1 and ...”. Write the strongest predicate possible, given the context of the assertion. Execute
the class to check your answers.

The provided Makefile in the problems directory can be used to compile, run, and verify all
problems.

package problems;

class JavaAssertions extends Predicates

{

static int i;

static Object o;

static String s;

static void m() {

i++;

s = new String("foo");

o = new Integer(1);

}

static void n(int j, Object p, String t) {

assert O(p);

if (p.equals(t))

return;

i |= 0x100;

j |= 0xEFF;

assert J(i, j);

t += "bar";

}

static Object o(int i, Object o, String s) {

assert O(o);

assert S(s);

if (s.equals(o))

return new Integer(i);

i ^= 0xFF;

assert I(i);

JavaAssertions.s += "piggie";

return s;

}

static Object p(int i, Object o, String s) {

assert O(o);

assert S(s);

switch (i) {

case -255:

s = "duck";

return o;

5

case -1:

o = s;

return new Short((short)i++);

case 0:

s = (String)o;

return new Byte((byte)i--);

case 1:

i *= -2;

return (String)o + s;

case 255:

i = o.hashCode();

return s;

case 257:

s = ((Integer)o).toString();

return s;

default:

return null;

}

}

public static void main(String[] args) {

assert I(i);

assert S(s);

assert O(o);

m();

assert I(i);

assert S(s);

assert O(o);

n(i, o, s);

assert I(i);

assert S(s);

assert O(o);

Object p = p(-1 & i, o, (String)o(i, o, s));

assert O(p);

Object q = p(-1, o, (String)p);

assert I(i);

assert S(s);

assert O(o);

assert O(q);

}

}

Problem 2. Annotate the following code with JML assertions as indicated. Write the strongest
predicate possible, given the context of the assertion. After you have written the assertions, first
execute the class using jmlrac to check your answers, then attempt to verify your answers using
escjava2.

package problems;

import problems.Predicates;

class JmlAssertions extends Predicates

{

static int i;

6

static Object o;

static String s;

static void m() {

i++;

s = new String("foo");

o = new Integer(1);

}

static void n(int j, Object p, String t) {

//@ assert O(p);

if (p.equals(t))

return;

i |= 0x100;

j |= 0xEFF;

//@ assert J(i, j);

t += "bar";

}

static Object o(int i, Object o, String s) {

//@ assert O(o);

//@ assert S(s);

if (s.equals(o))

return new Integer(i);

i ^= 0xFF;

//@ assert I(i);

JmlAssertions.s += "piggie";

return s;

}

static Object p(int i, Object o, String s) {

//@ assert O(o);

//@ assert S(s);

switch (i) {

case -255:

s = "duck";

return o;

case -1:

o = s;

return new Short((short)i++);

case 0:

s = (String)o;

return new Byte((byte)i--);

case 1:

i *= -2;

return (String)o + s;

case 255:

i = o.hashCode();

return s;

case 257:

s = ((Integer)o).toString();

return s;

7

default:

return null;

}

}

public static void main(String[] args) {

//@ assert I(i);

//@ assert S(s);

//@ assert O(o);

m();

//@ assert I(i);

//@ assert S(s);

//@ assert O(o);

n(i, o, s);

//@ assert I(i);

//@ assert S(s);

//@ assert O(o);

Object p = p(-1 & i, o, (String)o(i, o, s));

//@ assert O(p);

Object q = p(-1, o, (String)p);

//@ assert I(i);

//@ assert S(s);

//@ assert O(o);

//@ assert O(q);

}

}

Assumptions

You will notice that nearly all of the assertions that you wrote for Problems [one], page 4 and [two],
page 5 cannot be checked with ESC/Java2 as the JavaAnnotations and JmlAnnotations classes
are currently written. While you might know that each assertion is true, given the context of the
program and the body of the main() method, there is no information that ESC/Java2 can use to
reach this same conclusion.

Because ESC/Java2 performs verification in a modular fashion, the assumptions you based your
assertions upon in each method, which in turn were based upon what you read in the main()

method’s body, are unknown to ESC/Java2.

More precisely, to reason about the correctness of the method n(int, Object, String),
ESC/Java2 only uses the signature and body of n() and everything they depends upon. This set of
dependencies is large. It including all the types mentioned in n(), the signature and specification
of any methods n() might be overriding, and all invariants of the class JmlAssertions that relate
to fields mentioned in n(). (More details about method specifications and class invariants will be
covered shortly.)

Notice that, to reason about n(), nothing needs to be known about the body of the main()

method of JmlAssertions. Thus, all of the assumptions you made by reading the body of main()
are unknown to ESC/Java2.

The next two problems will focus on making assumptions explicit. The JML keyword assume is
used to specify assumptions precisely. assume is used very much like assert, except instead of
stating what must be true at a certain point in a program (as one does with an assert), an assume

statement says what is true at a certain point in a program.

In JML, an assume statement has the form

assume-statement ::= assume-keyword predicate [: expression] ;

8

The assume statement thus has the exact same structure of the assert statement, but means exactly
the opposite.

Problem 3. Annotate your code from [Problem two], page 5 with JML assumptions. Try to
write down the minimal set of assumptions that ensure all of your assertions verify correctly with
ESC/Java2.

For the following discussion we will refer to the answer key found in the class
JmlAssertionsAndAssumptionsKey, duplicated here for reference.

package problems;

import problems.Predicates;

class JmlAssertionsAndAssumptionsKey extends Predicates

{

static int i;

static Object o;

static String s;

//@ modifies i, s, o;

static void m() {

i++;

s = new String("foo");

o = new Integer(1);

}

//@ modifies i;

static void n(int j, Object p, String t) {

//@ assume p != null;

//@ assert p != null;

if (p.equals(t))

return;

//@ assume i == 1;

//@ assume j == 1;

i |= 0x100;

j |= 0xEFF;

//@ assert (i & j) == 1;

t += "bar";

}

//@ modifies JmlAssertionsAndAssumptionsKey.s;

static Object o(int i, Object o, String s) {

//@ assume o instanceof Integer;

//@ assume ((Integer)o).intValue() == 1;

//@ assume s != null;

//@ assert ((Integer)o).intValue() == 1;

//@ assert s != null;

if (s.equals(o))

return new Integer(i);

//@ assume i == 257;

i ^= 0xFF;

//@ assert i == 510;

JmlAssertionsAndAssumptionsKey.s += "piggie";

9

return s;

}

static Object p(int i, Object o, String s) {

//@ assume o instanceof Integer;

//@ assume s != null;

//@ assert o instanceof Integer;

//@ assert s != null;

switch (i) {

case -255:

s = "duck";

return o;

case -1:

o = s;

return new Short((short)i++);

case 0:

s = (String)o;

return new Byte((byte)i--);

case 1:

i *= -2;

return (String)o + s;

case 255:

i = o.hashCode();

return s;

case 257:

s = ((Integer)o).toString();

return s;

default:

return null;

}

}

public static void main(String[] args) {

//@ assume i == 0;

// assume s == null;

// assume o == null;

// assert i == 0;

// assert s == null;

// assert o == null;

m();

//@ assume i == 1;

//@ assert i == 1;

//@ assert s.equals("foo");

//@ assert ((Integer)o).intValue() == 1;

n(i, o, s);

//@ assert i == 256 + 1;

//@ assert s.equals("foo");

//@ assert new Integer(1).equals(o);

Object p = p(-1 & i, o, (String)o(i, o, s));

//@ assert p.equals("1");

Object q = p(-1, o, (String)p);

10

//@ assert i == 257;

//@ assert s.equals("foopiggie");

//@ assert ((Integer)o).intValue() == 1;

//@ assert ((Short)q).shortValue() == -1;

}

}

Note that the assumptions in this class are not the only ones that are correct.

Stronger assumptions (that is, logically stronger predicates) that imply these weaker assumptions
are correct also, though are not as weak as possible.

For example, if one were to write

//@ assume p != null && t != null;

to provide an assumption to fulfill the assertion

//@ assert p != null;

the assertion would verify. But the assumption is stronger than necessary, since the information
about the variable t is superfluous. The assumption can be made weaker by simply removing the
term t != null because A && B ==> A. I.e.,

//@ assert p != null && t != null ==> p != null;

is always a true assertion, regardless of the values of p and t.

The locations of the assumptions can also vary to some degree. Many cannot, in particular, those
having to do with assertions located at the very beginning of method bodies cannot be moved any
“earlier” because there is no earlier statement. Moving the assumption outside of the method body,
for example into the main() method, has no effect due to the nature of modular verification, as
discussed earlier. (add xref)

On the other hand, assumptions in the middle of a method can often be moved around with some
latitude. For example, the statement

//@ assume i == 257;

in the method o(int, Object, String) could be moved earlier in the method. In fact, because
the variable i is not referenced anywhere earlier in the method, the assumption could (in theory)
be moved all of the way to the beginning of the method.

One problem with ESC/Java2 highlighted by this exercise is its incomplete support for arithmetic,
and bitwise operations in particular. You will find that nearly all assertions having to do with the
results of bitwise operations cannot be verified.

Consider the following method:

static void nn(Object p, Object t) {

int i = 1, j = 1;

i = i | 0x100;

//@ assert i == 257;

//@ assert 0 <= i && i <= 1000;

//@ assert i == (1 | 0x100);

}

While all three assertions are true, only the third one (the most complicated one, in some respects!)
can be verified by ESC/Java2. This weakness is due to the fact that the theorem prover used
by ESC/Java2 (called “Simplify”) does not deal with bitwise operations (see Bug #965748 at
SourceForge for more information). Thus, one cannot reason about any variables involved in
bitwise operations at this time.

Assume statements are not to be used lightly. In fact, as a general rule, one should use assumes only
as an absolute last resort. It is entirely too easy to introduce subtle inconsistencies to specifications
with assume statements. If such an inconsistency exists, then the related methods will verify
immediately because they have a false premise.

11

E.g., this method verifies:

void m() {

//@ assume i == 0 && i == 1;

//@ assert true == false;

}

Ghost Variables

Lightweight Contracts

A specification of the class and its methods describes the manner in which the class is correctly
used. To write such a specification, one uses two primary concepts: method contracts and class
invariants. The problems of this section will focus on the former; invariants will be dealt with later.
(add xref).

A method contract consists of two basic assertions: a precondition which states under which cir-
cumstances the method is guaranteed to behave correctly, and a postcondition which states what
is true when the method completes executing.

Preconditions

The assume statements written for the preceding problems that were “pushed” to the beginning
of the method are preconditions; they state some of the conditions necessary for their method to
terminate properly.

Preconditions are specified in JML using the requires clause which has the following form:

requires-clause ::= requires pred-or-not ;

pred-or-not ::= predicate | \not_specified

The value \not_specified says that you have a precondition in mind but you simply are not
specifying it. Different tools can view such an unspecified precondition in different ways. For
example, ESC/Java2 assumes a default precondition of true.

The process of writing preconditions is a tricky business. Preconditions must be ensured by the
caller of the method, therefore everything stated in the precondition must be checkable by the
caller, prior to making the call. Thus, one can only (legitimately) express assertions in precoditions
that are “at least as visible” as the method they are guarding.

Problem 4. Annotate the following code with preconditions only. Consider what are the necessary
conditions for the method bodies to (a) not fail abnormally (e.g., throw NullPointerExceptions,
IndexOutOfBoundsExceptions, etc.), (b) pass all assertions in the code, and (c) perform their job
correctly (e.g., not compute an incorrect value, given your intuition of the purpose of the method).
Check the use of all of your method calls with ESC/Java2.

package problems;

class PrePostConditions

{

byte b;

int i;

Object o;

String s;

static Object so;

void m() {

o = s.toString();

}

12

void n() {

b = (byte)i;

if (b == i)

s = new String();

//@ assert s != null;

}

void o(int j) {

if (j == b)

o = null;

//@ assert o != null;

}

void p(String t) {

PrePostConditions.so = t.substring(3,6);

}

void q() {

if (StaticPreconditions.o.hashCode() == 0) {

StaticPreconditions.i = 1;

}

assert i == 1;

}

void r(Object o, byte b) {

if (o == null)

throw new IllegalArgumentException();

if (b < 0)

throw new IllegalArgumentException("bogus byte");

i = 2;

}

public static void main(String[] args) {

PrePostConditions ppc = new PrePostConditions();

ppc.m();

ppc.n();

ppc.o(127);

ppc.p("foobar");

ppc.q();

}

}

class StaticPreconditions {

static int i;

static Object o;

}

Notice that many preconditions focus on variables other than the formal parameters of their method
(as in the method o(int)). Some depend upon class attributes (as in the methods m() and n()),
while others focus on “global” values like static fields of the enclosing class (as in the method
p(String)) or static field of other classes (as in the method q()).

It is frequently argued that the more a method’s precondition depends upon variables other than
this and its fields, this’s class and its ancestors and their fields, and the method itself’s parameters,

13

the more poorly designed the method is due to the complexity of its interdependencies and its
consequent fragility in the face of “external” changes.

In this example in particular, the method q() is poorly designed due to its dependence on the
(static) fields of the seeminly unrelated class StaticPreconditions.

Additionally, the more complex a precondition is, the harder it sometimes is to ensure it is fulfilled.
This means that potentially more state has to be exposed as part of the design of related classes,
as the client is responsible for ensuring the precondition of a method is fulfilled before calling the
method. Consequently, complex preconditions place more burdon on the client programmer than
simple preconditions do.

This balancing act, between the complexity of preconditions and robustness of API methods in the
face of bogus input, is supremely evident in the design of core reusable APIs in the Java platform.
This topic will be discussed in more detail later in this document.

Postconditions

Postconditions are used to describe how a method should/must behave. If a method’s preconditions
are fulfilled, then the (normal) postconditions must be true if the method terminates normally—
that is, does not throw an exception or never terminates, perhaps by going into an infinite loop.

Normal postconditions are specified in JML using the ensures clause:

ensures-clause ::= ensures pred-or-not ;

Once again, an unspecified postcondition means “I have something in mind but I’m not writing it
down.” The default postcondition for ESC/Java2 is true.

In a postcondition predicate one can reference any visible fields, the parameters of the method, the
special keyword \result if the method has a non-void return type, and may contain expressions of
the form \old(E). \result is used to reference the value of the result of the method. The \old()
expression is used to references values in the pre-state of the method; that is, you can refer to the
state of any values just before the method began executing.

Problem 5. Annotate the code of the previous problem with postconditions that match your
preconditions. Consider what is known to be true when each method terminates normally. Check
your postconditions with ESC/Java2.

Exceptional (Abnormal) Postconditions

Frequently Java APIs use exceptions and errors (all descendents of the class Throwable) to indicate
errors or perform flow-control. Erroneous termination of a method is due to unexpected circum-
stances; changes in program flow are non-erroneous termination of a method due to expected,
but not “normal” behavior in response to some particular expected circumstances. This “design
confusion” of exceptions in Java is a primary criticism of the language.

Both situations are deemed exceptional termination in the JML vernacular because both use Java
exceptions to signal termination of a method. To state what is known about the system when an
exception is thrown, an exceptional postcondition is used.

Exceptional postconditions are written in JML using the signals clause:

signals-clause ::= signals (reference-type [ident]) [pred-or-not] ;

In many circumstances the value(s) of the exception object simply do not matter. In those circum-
stances the simpler form of the exceptional postcondition can be used:

//@ signals (java.io.IOException) aPredicate();

If one wants to refer to the exception object being thrown in the exceptional postcondition, a bound
identifier can be included in the signals clause. E.g.,

//@ signals (java.io.IOException ioe) ioe.getMessage().equals("I/O Error!");

which is equivalent to the signals clause

14

//@ signals (java.lang.Exception e) (e instanceof IOException) ==>

//@ ioe.getMessage().equals("I/O Error!");

The default exceptional postcondition for ESC/Java2 is currently

//@ signals (java.lang.Exception) true;

Note that a signals clause specifies when a certain exception may be thrown, not when a certain
exception must be thrown. To say that an exception must be thrown in some situation, one has to
exclude that situation from other signals clauses and from all ensures clauses.

Also note that Java errors are very rarely specified and are not reasoned about
at all using ESC/Java2. Also, Java “runtime exceptions” (descendents of the class
java.lang.RuntimeException) are also rarely specified using exceptional postconditions.

Problem 6. Annotate the code of the previous problem with exceptional postconditions. Consider
what is known to be true when each method terminates abnormally. If a method cannot terminate
abnormally, annotate such using an exceptional postcondition with a false predicate. Check your
exceptional postconditions with ESC/Java2.

Frame Axioms

Frame axioms are used to denote which fields may (not must) be modified by a method. Frame
axioms are specified in JML using the assignable clause:

assignable-clause ::= assignable store-ref [, store-ref] . . . ;

Special keywords \everything and \nothing are used to state that a method may modify any
visible field (in the former case), or may modify no visible field (in the case of the latter). To
specify that all visible field of an object o may be modified a globbing-like syntax is used, e.g.,
assignable o.*.

The default assignable clause for ESC/Java2 is

//@ assignable \everything;

Specifying the frame axioms of your methods is vital to correct reasoning with ESC/Java2. If your
frame axioms are incorrect, verification is unsound. Consider the following example.

class BogusFrameConditions

{

public int i;

public void l() {

//@ assume i == 0;

s();

//@ assert true == false;

}

public void m() {

//@ assume i == 0;

t();

//@ assert true == false;

}

public void n() {

//@ assume i == 0;

u();

//@ assert true == false;

}

public void o() {

15

//@ assume i == 0;

v();

//@ assert true == false;

}

//@ requires i == 0;

//@ ensures i == 1;

public void s() {

i++;

}

//@ requires i == 0;

//@ assignable \everything;

//@ ensures i == 1;

public void t() {

i++;

}

//@ requires i == 0;

//@ assignable this.*;

//@ ensures i == 1;

public void u() {

i++;

}

//@ requires i == 0;

//@ assignable i;

//@ ensures i == 1;

public void v() {

i++;

}

}

ESC/Java2 produces the following output:

BogusFrameConditions: l() ...

[TIME] passed

BogusFrameConditions: m() ...

[TIME] passed

BogusFrameConditions: n() ...

--

BogusFrameConditions.java:20: Warning: Possible assertion failure (Assert)

// assert true == false;

^

--

[TIME] failed

BogusFrameConditions: o() ...

--

BogusFrameConditions.java:26: Warning: Possible assertion failure (Assert)

// assert true == false;

16

^

--

[TIME] failed

Notice that the methods l() and m() pass, proving the bogus assertion true == false. The
reason these methods pass is because the verification of methods whose frame axiom is assignable
\everything; is incomplete.

The old SRC ESC/Java version 1 did not check frame conditions. This led to very specification
bugs that exhibited themselves in the subtle behavior of ESC/Java verifying a (sometimes very
complex) method very quickly.

ESC/Java2 now checks frame conditions, but its checking algorithm is not complete. Thus, as a
general rule, one should avoid the use of \everything in frame axioms as much as possible at this
point in time.

Problem 7. Annotate the code of the previous problem with frame axioms. Make your assignable
clauses as precise as possible, given the body of the methods. Make sure to write a frame axiom for
your s() method, but do not bother with the main(String[]) method. Check your frame axioms
with ESC/Java2.

Note that now that frame axioms are specified for all of your methods more specifications are
verified by ESC/Java2.

Data Groups

The concept of a data group is a useful one, particularly with respect to specifying the frame axioms
of a method and structuring one’s specification, from both from a design and a verification point
of view.

A data group can be thought of as as collection of fields that all relate to each other in some
way: perhaps they are the key data values of a class, or set of classes; or perhaps they are all
interdependent due to the design of your architecture.

One uses the in keyword to specify that a particular field is in (a part of) a specific data group. A
field can be in many data groups, but data groups cannot be nested. Thus, all of the data groups
of a system define a collection of (possibly overlapping) subsets of all fields.

Data groups are defined explicitly and implicitly, using the JMLDataGroup class in the former case,
and using implicit data groups in the latter. JMLDataGroup is the JML class used to define a new
data group, in lieu of a datagroup keyword at this point in time.

Every field implicitely defines a data group of the same name. For example, the Java field declara-
tions

class C

byte b;

int i;

Object o;

...

is equivalent to the following

class C

// JMLDataGroup b;

byte b; // in b;

// JMLDataGroup i;

int i; // in i;

// JMLDataGroup o;

Object o; // in o;

...

17

The data group most frequently used in JML specifications is an explicitely predefined data group
found in the specification for the base class java.lang.Object. It is called the objectState data
group. The objectState data group is used as a general data group that represents all non-private,
transient state of an object. The objectState data group is only an convenience construct; it has
no special significance to and of the JML tools.

A data group can be used within a frame axiom. For a data group d, writing assignable d means
that all fields which are part of the data group d might be modified.

Problem 8. Annotate the code of the previous problem with data groups. Make your assignable
clauses as broad as possible considering possible future extensions of the class you are specifying.
Check your frame axioms with ESC/Java2.

Heavyweight Specifications

Invariants

Reasoning about Loops

Aliasing

Models

18

Using JML and ESC/Java2

Specifying Abstract Classes and Interfaces

Annotating Preexisting Java Code

Annotating Preexisting APIs

Designing by Contract

19

Copying

The JML and ESC/Java2 Homework Exercises are licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 2.0 license. See http://creativecommons.org/licenses/by-
nc-sa/2.0/

Copyright c© 2004 Joseph R. Kiniry

You are free:

• to copy, distribute, display, and perform the work

• to make derivative works

Under the following conditions:

• Attribution. You must give the original author credit.

• Noncommercial. You may not use this work for commercial purposes.

• Share Alike. If you alter, transform, or build upon this work, you may distribute
the resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this
work.

Any of these conditions can be waived if you get permission from the author.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code.

See http://creativecommons.org/licenses/by-nc-sa/2.0/legalcode

20

Index

A
Abnormal Postconditions . 13
Abstract Classes, Specifying . 18
Aliasing . 17
Annotating Existing APIs . 18
Annotating Existing Java Code 18
API Annotation . 18
Assertions . 3
Assumptions . 7

C
Code Annotation . 18
Copying . 19
Core JML Constructs . 3

D
Data Groups . 16
Design by Contract . 18
Designing by Contract . 18

E
Exceptional Postconditions . 13

F
Frame Axioms . 14

G
Ghost Variables . 11

H
Heavyweight Specifications . 17

I
Interfaces, Specifying . 18
Introduction . 2
Invariants . 17

L
Lightweight Contracts. 11

M
Models. 17

O
objectState . 17

P
Postconditions . 13

Preconditions . 11

R
Reasoning about Loops . 17

S
Specifying Abstract Classes and Interfaces 18

U
Using JML and ESC/Java2 . 18

