
ESC/Java2
Use and Features

David Cok, Joe Kiniry, Erik Poll

Eastman Kodak Company, University College Dublin,

and Radboud University Nijmegen

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.1/??

The ESC/Java2 tool

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.2/??

Structure of ESC/Java2

ESC/Java2 consists of a
• parsing phase (syntax checks),
• typechecking phase (type and usage checks),
• static checking phase (reasoning to find potential

bugs) - runs a behind-the-scenes prover called
Simplify

Parsing and typechecking produce cautions or errors .

Static checking produces warnings .

The focus of ESC/Java2 is on static checking, but
reports of bugs, unreported errors, confusing
messages, documentation or behavior, and even just
email about your application and degree of success are
Very Welcome . [and Caution: this is still an alpha
release]

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.3/??

Running ESC/Java2

• Download the binary distribution from
http://secure.ucd.ie/products/opensource/ESCJava2

• Untar the distribution and follow the instructions in
README.release about setting environment variables.

• Run the tool by doing one of the following:
• Run a script in the release: escjava2 or escj.bat
• Run the tool directly with java -cp esctools2.jar

escjava.Main , but then you need to be sure to
provide values for the -simplify and -specs options.

• Run a GUI version of the tool by double-clicking the
release version of esctools2.jar

• Run a GUI version of the tool by executing it with
java -jar esctools2.jar (in which case you can add
options).

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.4/??

Supported platforms

ESC/Java2 is supported on

• Linux

• MacOSX

• Cygwin on Windows

• Windows (but there are some environment issues still
to be resolved)

• Solaris (in principle - we are not testing there)

Note that the tool itself is relatively portable Java, but the
underlying prover is a Modula-3 application that must be
compiled and supplied for each platform.

Help with platform-dependence issues is welcome.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.5/??

Environment

The application relies on the environment having

• a Simplify executable (such as Simplify-1.5.4.macosx)
for your platform, typically in the same directory as the
application’s jar file;

• the SIMPLIFY environment variable set to the name of
the executable for this platform;

• a set of specifications for Java system files - by default
these are bundled into the application jar file, but they
are also in jmlspecs.jar .

• The scripts prefer that the variable
ESCTOOLS_RELEASE be set to the directory
containing the release.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.6/??

Command-line options
The items on the command-line are either options and their
arguments or input entries. Some commonly used options
(see the documentation for more):

• -help - prints a usage message

• -quiet - turns off informational messages (e.g. progress messages)

• -nowarn - turns off a warning

• -classpath - sets the path to find referenced classes [best if it contains ‘.’]

• -specs - sets the path to library specification files

• -simplify - provides the path to the simplify executable

• -f - the argument is a file containing command-line arguments

• -nocheck - parse and typecheck but no verification

• -routine - restricts checking to a single routine

• -eajava, -eajml - enables checking of Java assertions

• -counterexample - gives detailed information about a warning

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.7/??

Input entries

The input entries on the command-line are those classes
that are actually checked. Many other classes may be
referenced for class definitions or specifications - these are
found on the classpath (or sourcepath or specspath).

• file names - of java or specification files (relative to the
current directory)

• directories - processes all java or specification files
(relative to the current directory)

• package - (fully qualified name) - found on the classpath

• class - (fully qualified name) - found on the classpath

• list - (prefaced by -list) - a file containing input entries

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.8/??

Specification files

• Specifications may be added directly to .java files

• Specifications may alternatively be added to
specification files.
• No method bodies
• No field initializers
• Recommended suffix: .refines-java
• Recommend a refines annotation (see

documentation)
• Must also be on the classpath

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.9/??

Specification file example

package java.lang;

import java.lang.reflect.*;

import java.io.InputStream;

public final class Class implements java.io.Serializable {

private Class();

/*@ also public normal_behavior

@ ensures \result != null && !\result.equals("")

@ && (* \result is the name of this class object *);

@*/

public /*@ pure @*/ String toString();

....

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.10/??

Bag demo

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.11/??

modular reasoning

ESC/Java2 reasons about every method individually. So in
class A{

byte[] b;

public void n() { b = new byte[20]; }

public void m() { n();

b[0] = 2;

... }

ESC/Java2 warns that b[0] may be a null dereference here,

even though you can see that it won’t be.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.12/??

modular reasoning

To stop ESC/Java2 complaining: add a postcondition
class A{

byte[] b;

//@ ensures b != null && b.length = 20;

public void n() { b = new byte[20]; }

public void m() { n();

b[0] = 2;

... }

So: property of method that is relied on has to be made
explicit.
Also: subclasses that override methods have to preserve
these.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.13/??

modular reasoning

Similarly, ESC/Java will complain about b[0] = 2 in
class A{

byte[] b;

public void A() { b = new byte[20]; }

public void m() { b[0] = 2;

... }

Maybe you can see that this is a spurious warning, though
this will be harder than in the previous example: you’ll have
to inspect all constructors and all methods.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.14/??

modular reasoning

To stop ESC/Java2 complaining here: add an invariant
class A{

byte[] b;

//@ invariant b != null && b.length == 20;

// or weaker property for b.length ?

public void A() { b = new byte[20]; }

public void m() { b[0] = 2;

... }

So again: properties you rely on have to be made explicit.

And again: subclasses have to preserve these properties.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.15/??

assume

Alternative to stop ESC/Java2 complaining: add an
assumption:

...

//@ assume b != null && b.length > 0;

b[0] = 2;

...

Especially useful during development, when you’re still
trying to discover hidden assumptions, or when
ESC/Java2’s reasoning power is too weak.

(requires can be understood as a form of assume.)

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.16/??

need for assignable clauses

class A{

byte[] b;

...

public void m() { ...

b = new byte[3];

//@ assert b[0] == 0; // ok!

o.n(...);

//@ assert b[0] == 0; // ok?

...

}

What does ESC/Java need to know about o.n to check the
second assert ?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.17/??

need for assignable clauses

class A{

byte[] b;

...

public void m() { ...

b = new byte[3];

//@ assert b[0] == 0; // ok!

o.n(b);

//@ assert b[0] == 0; // ok?

...

}

A detailed spec for o.n might give a postcondition saying
that b[0] is still 0.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.18/??

need for assignable clauses

class A{

byte[] b;

...

public void m() { ...

b = new byte[3];

//@ assert b[0] == 0; // ok!

o.n();

//@ assert b[0] == 0; // ok?

...

}

If the postcondition of o.n doesn’t tell us b won’t be not
null – and can’t be expected to – we need the assignable
clause to tell us that o.n won’t affect b[0].

Declaring o.n as pure would solve the problem.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.19/??

ESC/Java is not complete

ESC/Java may produce warnings about correct programs.

/*@ requires 0 < n;

@ ensures \result ==

@ (\exists int x,y,z;

@ pow(x,n)+pow(y,n) == pow(z,n));

@*/

public static boolean fermat(double n) {

return (n==2);

}

Warning: postcondition possibly not satisfied
(Typically, the theorem prover times out in complicated cases .)

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.20/??

ESC/Java is not sound

ESC/Java may fail to produce warning about incorrect
program.

public class Positive{

private int n = 1; //@ invariant n > 0;

public void increase(){ n++; }

}

ESC/Java(2) produces no warning, but increase may break
the invariant, namely if n is 2

32 − 1.

This can be fixed by improved model of Java arithmetic, but
this does come at a price (both in specs and in code).

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.21/??

ESC/Java is not sound

More fundamental problem: sound modular verification for
OO programs with invariants .

public class A{ public class B{

B b;

int x; int y;

//@ invariant x <= b.y;

void decr x(){ void decr y(){

x--; } y--; }

} }

How can we know that invoking decr y on some B won’t
break the invariant of some A, or some object whose
invariant depends on a B object.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.22/??

ESC/Java is not sound

public class A{ public class B{

B b;

int x; int y;

//@ invariant x <= b.y;

void decr x(){x++;} void incr y(){y++;}

} }

public class D{

B b;

void decr y(){

b.y--; }
}

How can D know it might be breaking A’s invariant?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.23/??

Modularity problem

Modular verification for (open) OO programs with invariants
is a big & fundamental problem. Most verification tools fail
here. Root causes:

1. invariants talking about another object’s fields

2. object modifying another object’s field

3. possibility of aliasing

NB 1 & 2 are unavoidable, eg. think of an object modifying – or it s
invariant mentioning – the contents of an array field

Alias control and ownership might provide solutions, eg.
universes by Peter Müller & co or explicit pack/unpack
operations by Rustan Leino & co.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.24/??

	
	Structure of ESC/Java2
	Running ESC/Java2
	Supported platforms
	Environment
	Command-line options
	Input entries
	Specification files
	Specification file example
	Bag demo
	modular reasoning
	modular reasoning
	modular reasoning
	modular reasoning
	assume
	need for assignable clauses
	need for assignable clauses
	need for assignable clauses
	ESC/Java is not complete
	ESC/Java is not sound
	ESC/Java is not sound
	ESC/Java is not sound
	Modularity problem

