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The ESC/Java2 tool

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.2/??



Structure of ESC/Java2

ESC/Java2 consists of a
• parsing phase (syntax checks),
• typechecking phase (type and usage checks),
• static checking phase (reasoning to find potential

bugs) - runs a behind-the-scenes prover called
Simplify

Parsing and typechecking produce cautions or errors .

Static checking produces warnings .

The focus of ESC/Java2 is on static checking, but
reports of bugs, unreported errors, confusing
messages, documentation or behavior, and even just
email about your application and degree of success are
Very Welcome . [and Caution: this is still an alpha
release]
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Running ESC/Java2

• Download the binary distribution from
http://secure.ucd.ie/products/opensource/ESCJava2

• Untar the distribution and follow the instructions in
README.release about setting environment variables.

• Run the tool by doing one of the following:
• Run a script in the release: escjava2 or escj.bat
• Run the tool directly with java -cp esctools2.jar

escjava.Main , but then you need to be sure to
provide values for the -simplify and -specs options.

• Run a GUI version of the tool by double-clicking the
release version of esctools2.jar

• Run a GUI version of the tool by executing it with
java -jar esctools2.jar (in which case you can add
options).
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Supported platforms

ESC/Java2 is supported on

• Linux

• MacOSX

• Cygwin on Windows

• Windows (but there are some environment issues still
to be resolved)

• Solaris (in principle - we are not testing there)

Note that the tool itself is relatively portable Java, but the
underlying prover is a Modula-3 application that must be
compiled and supplied for each platform.

Help with platform-dependence issues is welcome.
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Environment

The application relies on the environment having

• a Simplify executable (such as Simplify-1.5.4.macosx)
for your platform, typically in the same directory as the
application’s jar file;

• the SIMPLIFY environment variable set to the name of
the executable for this platform;

• a set of specifications for Java system files - by default
these are bundled into the application jar file, but they
are also in jmlspecs.jar .

• The scripts prefer that the variable
ESCTOOLS_RELEASE be set to the directory
containing the release.
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Command-line options
The items on the command-line are either options and their
arguments or input entries. Some commonly used options
(see the documentation for more):

• -help - prints a usage message

• -quiet - turns off informational messages (e.g. progress messages )

• -nowarn - turns off a warning

• -classpath - sets the path to find referenced classes [best if it contains ‘.’]

• -specs - sets the path to library specification files

• -simplify - provides the path to the simplify executable

• -f - the argument is a file containing command-line arguments

• -nocheck - parse and typecheck but no verification

• -routine - restricts checking to a single routine

• -eajava, -eajml - enables checking of Java assertions

• -counterexample - gives detailed information about a warning
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Input entries

The input entries on the command-line are those classes
that are actually checked. Many other classes may be
referenced for class definitions or specifications - these are
found on the classpath (or sourcepath or specspath).

• file names - of java or specification files (relative to the
current directory)

• directories - processes all java or specification files
(relative to the current directory)

• package - (fully qualified name) - found on the classpath

• class - (fully qualified name) - found on the classpath

• list - (prefaced by -list ) - a file containing input entries
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Specification files

• Specifications may be added directly to .java files

• Specifications may alternatively be added to
specification files.
• No method bodies
• No field initializers
• Recommended suffix: .refines-java
• Recommend a refines annotation (see

documentation)
• Must also be on the classpath

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.9/??



Specification file example

package java.lang;

import java.lang.reflect.*;

import java.io.InputStream;

public final class Class implements java.io.Serializable {

private Class();

/*@ also public normal_behavior

@ ensures \result != null && !\result.equals("")

@ && (* \result is the name of this class object *);

@*/

public /*@ pure @*/ String toString();

....
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Bag demo
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modular reasoning

ESC/Java2 reasons about every method individually. So in
class A{

byte[] b;

public void n() { b = new byte[20]; }

public void m() { n();

b[0] = 2;

... }

ESC/Java2 warns that b[0] may be a null dereference here,

even though you can see that it won’t be.
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modular reasoning

To stop ESC/Java2 complaining: add a postcondition
class A{

byte[] b;

//@ ensures b != null && b.length = 20;

public void n() { b = new byte[20]; }

public void m() { n();

b[0] = 2;

... }

So: property of method that is relied on has to be made
explicit.
Also: subclasses that override methods have to preserve
these.
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modular reasoning

Similarly, ESC/Java will complain about b[0] = 2 in
class A{

byte[] b;

public void A() { b = new byte[20]; }

public void m() { b[0] = 2;

... }

Maybe you can see that this is a spurious warning, though
this will be harder than in the previous example: you’ll have
to inspect all constructors and all methods.
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modular reasoning

To stop ESC/Java2 complaining here: add an invariant
class A{

byte[] b;

//@ invariant b != null && b.length == 20;

// or weaker property for b.length ?

public void A() { b = new byte[20]; }

public void m() { b[0] = 2;

... }

So again: properties you rely on have to be made explicit.

And again: subclasses have to preserve these properties.
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assume

Alternative to stop ESC/Java2 complaining: add an
assumption:

...

//@ assume b != null && b.length > 0;

b[0] = 2;

...

Especially useful during development, when you’re still
trying to discover hidden assumptions, or when
ESC/Java2’s reasoning power is too weak.

(requires can be understood as a form of assume.)
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need for assignable clauses

class A{

byte[] b;

...

public void m() { ...

b = new byte[3];

//@ assert b[0] == 0; // ok!

o.n(...);

//@ assert b[0] == 0; // ok?

...

}

What does ESC/Java need to know about o.n to check the
second assert ?
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need for assignable clauses

class A{

byte[] b;

...

public void m() { ...

b = new byte[3];

//@ assert b[0] == 0; // ok!

o.n(b);

//@ assert b[0] == 0; // ok?

...

}

A detailed spec for o.n might give a postcondition saying
that b[0] is still 0.
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need for assignable clauses

class A{

byte[] b;

...

public void m() { ...

b = new byte[3];

//@ assert b[0] == 0; // ok!

o.n();

//@ assert b[0] == 0; // ok?

...

}

If the postcondition of o.n doesn’t tell us b won’t be not
null – and can’t be expected to – we need the assignable
clause to tell us that o.n won’t affect b[0].

Declaring o.n as pure would solve the problem.
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ESC/Java is not complete

ESC/Java may produce warnings about correct programs.

/*@ requires 0 < n;

@ ensures \result ==

@ (\exists int x,y,z;

@ pow(x,n)+pow(y,n) == pow(z,n));

@*/

public static boolean fermat(double n) {

return (n==2);

}

Warning: postcondition possibly not satisfied
(Typically, the theorem prover times out in complicated cases .)
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ESC/Java is not sound

ESC/Java may fail to produce warning about incorrect
program.

public class Positive{

private int n = 1; //@ invariant n > 0;

public void increase(){ n++; }

}

ESC/Java(2) produces no warning, but increase may break
the invariant, namely if n is 2

32 − 1.

This can be fixed by improved model of Java arithmetic, but
this does come at a price (both in specs and in code).
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ESC/Java is not sound

More fundamental problem: sound modular verification for
OO programs with invariants .

public class A{ public class B{

B b;

int x; int y;

//@ invariant x <= b.y;

void decr x(){ void decr y(){

x--; } y--; }

} }

How can we know that invoking decr y on some B won’t
break the invariant of some A, or some object whose
invariant depends on a B object.
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ESC/Java is not sound

public class A{ public class B{

B b;

int x; int y;

//@ invariant x <= b.y;

void decr x(){x++;} void incr y(){y++;}

} }

public class D{

B b;

void decr y(){

b.y--; }
}

How can D know it might be breaking A’s invariant?
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Modularity problem

Modular verification for (open) OO programs with invariants
is a big & fundamental problem. Most verification tools fail
here. Root causes:

1. invariants talking about another object’s fields

2. object modifying another object’s field

3. possibility of aliasing

NB 1 & 2 are unavoidable, eg. think of an object modifying – or it s
invariant mentioning – the contents of an array field

Alias control and ownership might provide solutions, eg.
universes by Peter Müller & co or explicit pack/unpack
operations by Rustan Leino & co.
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