
Specification tips and pitfalls
David Cok, Joe Kiniry, and Erik Poll

Eastman Kodak Company, University College Dublin,

and Radboud University Nijmegen

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.1/??

Specifications tips and pitfalls

1. Inherited specifications

2. Aliasing

3. Object invariants

4. Inconsistent assumptions

5. Exposed references

6. \old

7. How to write specs

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.2/??

#1: Specification inheritance
and behavioural subtyping

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.3/??

Behavioural subtyping

Suppose Child extends Parent.

• Behavioural subtyping = objects from subclass Child
“behave like” objects from superclass Parent

• Principle of substitutivity [Liskov]:
code will behave “as expected” if we provide an Child
object where a Parent object was expected.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.4/??

Behavioural subtyping

Behavioural subtyping usually enforced by insisting that

• invariant in subclass is stronger than invariant in
superclass

• for every method,
• precondition in subclass is weaker (!) than

precondition is superclass
• postcondition in subclass is stronger than

postcondition is superclass

JML achieves behavioural subtyping by specification
inheritance : any child class inherits the specification of its
parent.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.5/??

Specification inheritance for invariants

Invariants are inherited in subclasses. Eg.
class Parent {

...

//@ invariant invParent;

... }

class Child extends Parent {

...

//@ invariant invChild;
... }

the invariant for Child is invChild && invParent

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.6/??

Specification inheritance for method specs

class Parent {

//@ requires i >= 0;

//@ ensures \result >= i;

int m(int i){ ... }

}

class Child extends Parent {

//@ also

//@ requires i <= 0;

//@ ensures \result <= i;

int m(int i){ ... }
}

Keyword also indicates there are inherited specs.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.7/??

Specification inheritance for method specs

Method m in Child also has to meet the spec given in
Parent class. So the complete spec for Child is
class Child extends Parent {

/*@ requires i >= 0;

@ ensures \result >= i;

@ also

@ requires i <= 0

@ ensures \result <= i;

@*/

int m(int i){ ... }
}

What can result of m(0) be?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.8/??

Specification inheritance for method specs

This spec for Child is equivalent with
class Child extends Parent {

/*@ requires i <= 0 || i >= 0;

@ ensures \old(i >= 0) ==> \result >= i;

@ ensures \old(i <= 0) ==> \result <= i;

@*/

int m(int i){ ... }
}

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.9/??

Inherited specifications: trick

Another example: two Objects that are == are always also
equals . But the converse is not necessarily true. But it is
true for objects whose dynamic type is Object.

public class Object {
//@ ensures (this == o) ==> \result;
/ * @ ensures \typeof(this) == \type(Object)

==> (\result == (this==o));
* /
public boolean equals(Object o);

}

True for all Objects
�
�
�
�
�
�
�
�
�
��

Not necessarily true for subtypes
B

B
B

B
B

BBM

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.10/??

Inherited specifications

So

• Base class specifications apply to subclasses
• that is, ESC/Java2 enforces behavioral subtyping
• Specs from implemented interfaces also must hold

for implementing classes

• Be thoughtful about how strict the base class specs
should be

• Guard them with \typeof(this) == \type(...) if need be

• Restrictions on exceptions such as normal_behavior or
signals (E e) false; will apply to derived classes as well.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.11/??

#2: Aliasing

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.12/??

Aliasing
A common but non-obvious problem that causes violated
invariants is aliasing.
public class Alias {

/ * @ non_null * / int[] a = new int[10];

boolean noneg = true;

/ * @ invariant noneg ==>

(\forall int i; 0<=i && i < a.length; a[i]>=0); * /

//@ requires 0<=i && i < a.length;

public void insert(int i, int v) {

a[i] = v;

if (v < 0) noneg = false;

}

}

produces
Alias.java:12: Warning: Possible violation of object inva riant (Invariant)

}

ˆ

Associated declaration is "Alias.java", line 5, col 6:

/ * @ invariant noneg ==> (\forall int i; 0<=i && i < a.length; ...

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.13/??

Aliasing

A full counterexample context (-counterexample option)
produces, among lots of other information:

brokenObj%0 != this
(brokenObj%0).(a@pre:2.24) == tmp0!a:10.4
this.(a@pre:2.24) == tmp0!a:10.4

that is, this and some different object (brokenObj) share the
same a object.

int noneg
int[] a

int noneg
int[] a

this brokenObj

an int[] object

XXXXXXXXXXz

@
@@R

t t

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.14/??

Aliasing

To fix this, declare that a is owned only by its parent object:
(owner is a ghost field of java.lang.Object)
public class Alias {

/ * @ non_null * / int[] a = new int[10];

boolean noneg = true;

/ * @ invariant noneg ==>

(\forall int i; 0<=i && i < a.length; a[i]>=0); * /

//@ invariant a.owner == this;

//@ requires 0<=i && i < a.length;

public void insert(int i, int v) {

a[i] = v;

if (v < 0) noneg = false;

}

public Alias() {

//@ set a.owner = this;

}

}

�
�

�
�

�
�

�
�

int noneg
int[] a

int noneg
int[] a

int[]
owner

int[]
owner

this brokenObj

an int[] object

an int[] object

A
A
A
A
A
AU

@
@@R

t t

t

t

@
@

@
@

@I

J
J

J
J

J
J

J
JJ]

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.15/??

Aliasing
Another example. This one fails on the postcondition.
public class Alias2 {

/ * @ non_null * / Inner n = new Inner();

/ * @ non_null * / Inner nn = new Inner();

//@ invariant n.owner == this;

//@ invariant nn.owner == this;

//@ ensures n.i == \old(n.i + 1);

public void add() {

n.i++;

nn.i++;

}

Alias2();

}

class Inner {

public int i;

//@ ensures i == 0;

Inner();

}

�
�

�
�

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.16/??

Aliasing

• The counterexample context shows

this.(nn:3.24) == tmp0!n:10.4
tmp2!nn:11.4 == tmp0!n:10.4

• These hint that n and nn are references to the same
object.

• If we add the invariant //@ invariant n != nn; to forbid
aliasing between these two fields, then all is well.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.17/??

Aliasing

• Aliasing is a serious difficulty in verification

• Handling aliasing is an active area of research, related
to handling frame conditions

• It is all about knowing what is modified and what is not

• These owner fields or the equivalent create a form of
encapsulation that can be checked by ESC/Java to
control what might be modified by a given operation

• universes have now been added to JML to provide a
more advanced form of alias control.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.18/??

#3: Write object invariants

• Be sure that class invariants are about the object at
hand.

• Statements about all objects of a class may indeed be
true, but they are difficult to prove, especially for
automated provers.

• For example, if a predicate P is supposed to hold for
objects of type T, then do not write

//@ invariant (\forall T t; P(t));

• Instead, write

//@ invariant P(this);

• The latter will make a more provable postcondition at
the end of a constructor.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.19/??

#4: Inconsistent assumptions

If you have inconsistent specifications you can prove
anything:

public class Inconsistent {

public void m() {

int a,b,c,d;

//@ assume a == b;

//@ assume b == c;

//@ assume a != c;

//@ assert a == d; // Passes, but inconsistent

//@ assert false; // Passes, but inconsistent

}

}

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.20/??

#4: Inconsistent assumptions

Another example:

public class Inconsistent2 {

public int a,b,c,d;

//@ invariant a == b;

//@ invariant b == c;

//@ invariant a != c;

public void m() {

//@ assert a == d; // Passes, but inconsistent

//@ assert false; // Passes, but inconsistent

}

}

We hope to put in checks for this someday!

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.21/??

#5: Exposed references
Problems can arise when a reference to an internal object is
exported from a class:

public class Exposed {

/ * @ non_null * / private int[] a = new int[10];

//@ invariant a.length > 0 && a[0] >= 0;

//@ ensures \result != null;

//@ ensures \result.length > 0;

//@ pure

public int[] getArray() { return a; }

}

class X {

void m(/ * @ non_null * / Exposed e) {

e.getArray()[0] = -1; // unchecked invariant violation

}

}

• ESC/Java does not check that every allocated object
still satisfies its invariants.

• Similar hidden problems can result if public fields are
modified directly.

�
�

�
�

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.22/??

#6: \old

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.23/??

\old

\old is used to indicate evaluation in the pre-state in a
postcondition expression.

Consider specifying
public static native void arraycopy(Object[] src, int srcP os,

Object[] dest, int destPos, int length);

Try:
ensures (\forall int i; 0<=i && i<length; dest[destPos+i] = = src[srcPos+i]);

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.24/??

\old

\old is used to indicate evaluation in the pre-state in a
postcondition expression.

Consider specifying
public static native void arraycopy(Object[] src, int srcP os,

Object[] dest, int destPos, int length);

Try:
ensures (\forall int i; 0<=i && i<length; dest[destPos+i] = = src[srcPos+i]);

Wrong!

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.25/??

\old

\old is used to indicate evaluation in the pre-state in a
postcondition expression.

Consider specifying
public static native void arraycopy(Object[] src, int srcP os,

Object[] dest, int destPos, int length);

Try:
ensures (\forall int i; 0<=i && i<length; dest[destPos+i] = = src[srcPos+i]);

Wrong!

Besides exceptions and invalid arguments, don’t forget
aliasing - dest and src may be the same array:
ensures (\forall int i; 0<=i && i<length;

dest[destPos+i] == \old(src[srcPos+i]);

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.26/??

\old

\old is used to indicate evaluation in the pre-state in a
postcondition expression.

Consider specifying
public static native void arraycopy(Object[] src, int srcP os,

Object[] dest, int destPos, int length);

Try:
ensures (\forall int i; 0<=i && i<length; dest[destPos+i] = = src[srcPos+i]);

Wrong!

Besides exceptions and invalid arguments, don’t forget
aliasing - dest and src may be the same array:
ensures (\forall int i; 0<=i && i<length;

dest[destPos+i] == \old(src[srcPos+i]);

And don’t forget the other elements:
ensures (\forall int i; (0<=i && i<destPos) ||

(destPos+length <= i && i < destPos.length);

dest[i] == \old(dest[i]);

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.27/??

\old

In postcondition
ensures (\forall int i; 0<=i && i<length;

dest[destPos+i] == \old(src[srcPos+i]);

public static native void arraycopy(Object[] src, int srcP os,

Object[] dest, int destPos, int length);

shouldn’t we write \old(length) instead of length?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.28/??

\old

In postcondition
ensures (\forall int i; 0<=i && i<length;

dest[destPos+i] == \old(src[srcPos+i]);

public static native void arraycopy(Object[] src, int srcP os,

Object[] dest, int destPos, int length);

shouldn’t we write \old(length) instead of length?
And \old(dest)[...] instead of dest[...]?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.29/??

\old

In postcondition
ensures (\forall int i; 0<=i && i<length;

dest[destPos+i] == \old(src[srcPos+i]);

public static native void arraycopy(Object[] src, int srcP os,

Object[] dest, int destPos, int length);

shouldn’t we write \old(length) instead of length?
And \old(dest)[...] instead of dest[destPos+i]?
Strictly speaking: yes. But because this is so easy to get
forget, any mention of an argument x in postcondition
means \old(x).

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.30/??

\old

In postcondition
ensures (\forall int i; 0<=i && i<length;

dest[destPos+i] == \old(src[srcPos+i]);

public static native void arraycopy(Object[] src, int srcP os,

Object[] dest, int destPos, int length);

shouldn’t we write \old(length) instead of length?
And \old(dest)[...] instead of dest[destPos+i]?
Strictly speaking: yes. But because this is so easy to get
forget, any mention of an argument x in postcondition
means \old(x).

This means it’s impossible to refer to the new value of length in
postcondition of arraycopy. But this value is unobservable for
clients anyway.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.31/??

#7: How to write specs

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.32/??

Getting started

• Start with foundation and library routines

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.33/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.33/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.33/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

• For each reference field: should an owner field be set
for it?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.33/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

• For each reference field: should an owner field be set
for it?

• For each method: should it be pure ? Should the
arguments or the result be non_null ?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.33/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

• For each reference field: should an owner field be set
for it?

• For each method: should it be pure ? Should the
arguments or the result be non_null ?

• For each class: what invariant expresses the
self-consistency of the internal data?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.33/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

• For each reference field: should an owner field be set
for it?

• For each method: should it be pure ? Should the
arguments or the result be non_null ?

• For each class: what invariant expresses the
self-consistency of the internal data?

• Add pre- and post-conditions to limit the inputs and
outputs of each method.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.33/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

• For each reference field: should an owner field be set
for it?

• For each method: should it be pure ? Should the
arguments or the result be non_null ?

• For each class: what invariant expresses the
self-consistency of the internal data?

• Add pre- and post-conditions to limit the inputs and
outputs of each method.

• Add possible unchecked exceptions to throws clauses.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.33/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

• For each reference field: should an owner field be set
for it?

• For each method: should it be pure ? Should the
arguments or the result be non_null ?

• For each class: what invariant expresses the
self-consistency of the internal data?

• Add pre- and post-conditions to limit the inputs and
outputs of each method.

• Add possible unchecked exceptions to throws clauses.

• Start with simple specifications; proceed to complex
ones as they have value.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.33/??

Getting started

• Separate conjunctions to get information about which
conjunct is violated. Use

requires A;

requires B;

not

requires A && B;

• Use assert statements to find out what is going wrong.

• Use assume statements that you KNOW are correct to
help the prover along.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.34/??

Finally

• Specification is tricky - getting it right is hard, even with
tools

• Try it - a substantial research gap is experience on
industrial-scale sets of code

• Communicate - we are willing to offer advice

• Share your experience - tools will get better and we will
all learn better techniques for successful specification
(use JML and ESC/Java mailing lists)

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.35/??

	Specifications tips and pitfalls
	{Large ed #1: Specification inheritance and behavioural subtyping }
	Behavioural subtyping
	Behavioural subtyping
	$!!!$small Specification inheritance for invariants
	$!!!!!$small Specif-ication inheritance for method specs
	$!!!!!$small Specif-ication inheritance for method specs
	$!!!!!$small Specification inheritance for method specs
	Inherited specifications: trick
	Inherited specifications
	{Large ed #2: Aliasing}
	Aliasing
	Aliasing
	Aliasing
	Aliasing
	Aliasing
	Aliasing
	#3: Write object invariants
	#4: Inconsistent assumptions
	#4: Inconsistent assumptions
	#5: Exposed references
	{Large ed #6: old }
	old
	old
	old
	old
	old
	old
	old
	old
	{Large ed #7: How to write specs }
	Getting started
	Getting started
		extit {Finally}

