
Advanced JML
and more tips and pitfalls

David Cok, Joe Kiniry, and Erik Poll

Eastman Kodak Company, University College Dublin,
and Radboud University Nijmegen

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.1/??

Core JML
Remember the core JML keywords were

• requires

• ensures

• signals

• assignable

• normal behavior

• invariant

• non null

• pure

• \old, \forall, \exists, \result

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.2/??

More advanced JML features
• Visibility

• Specifying (im)possibility of exceptions

• Assignable clauses and datagroups

• Aliasing

• Specification inheritance, ensuring behavioural
subtyping

• Specification-only fields: ghost and mode fields

• The semantics of invariant

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.3/??

Visibility

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.4/??

Visibility

JML imposes visibility rules similar to Java, eg.

public class Bag{

...

private int n;

//@ requires n > 0;

public int extractMin(){ ... }

is not type-correct, because public method extractMin
refers to private field n.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.5/??

Visibility

public int pub; private int priv;

//@ requires i <= pub;

public void pub1 (int i) { ... }

//@ requires i <= pub && i <= priv;

private void priv1 (int i) ...

//@ requires i <= pub && i <= priv; // WRONG !!

public void pub2(int i) { ... }

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.6/??

Visibility: spec_public

Keyword spec public loosens visibility for specs.
Private spec public fields are allowed in public specs,
e.g.:

public class Bag{

...

private /*@ spec public @*/ int n;

//@ requires n > 0;

public int extractMin(){ ... }

Exposing private details can be ugly, of course. A nicer, but more
advanced alternative is to use public model fields to represent
(abstract away from) private implementation details.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.7/??

Exceptions and JML

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.8/??

Exceptional specifications

A method specification can (dis)allow the throwing of
exceptions, and specify a exceptional postcondition that
should hold in the event an exception is thrown.

There are some implicit rules for (dis)allowing exceptions.

Warning: exceptional specifications are easy to get wrong.

Not allowing any exceptions to be thrown is the simplest
approach.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.9/??

Exceptions allowed by specs

By default, a method is allowed to throw exceptions, but
only those listed in its throws clause. So

//@ requires 0 <= amount && amount <= balance;

public int debit(int amount)

throws BankException

{ ... }

has an implicit clause
signals (BankException) true;

and an implicit clause
signals (Exception e) e instanceof BankException;

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.10/??

Exceptions allowed by specs

By default, a method is allowed to throw exceptions, but
only those listed in its throws clause. So

//@ requires 0 <= amount && amount <= balance;

public int debit(int amount)

{ ... }

has an implicit clause
signals (Exception) false;

NB debit is now not even allowed to throw an unchecked
exception, even though Java does not require a throws
clause for these.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.11/??

Ruling out exceptions

To forbid a particular exception SomeException

1. omit it from throws clause (only possible for
unchecked exceptions)

2. add an explicit

signals (SomeException) false;

3. limit the set of allowed exceptions, use a
postcondition such as

signals (Exception e) e instanceof E1

|| ...
|| e instanceof En;

or, equivalently, us the shorthand for this

signals_only E1, ... En;

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.12/??

Ruling out exceptions

To forbid all exceptions

1. omit all exceptions from throws clause (only possible
for unchecked exceptions)

2. add an explicit

signals (Exception) false;

3. use keyword normal_behavior to rule out all
exceptions

/*@ normal behavior

requires ...

ensures ...

@*/

normal behavior has implicit signals(Exception)false

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.13/??

may vs must throw an exception

Beware of the difference between

(1) if P holds, then SomeException is thrown

and

(2) if SomeException is thrown, then P holds

These are easy to confuse!

(2) can be expressed with signals ,
(1) can be expressed with exceptional behavior

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.14/??

exceptional_behavior

/*@ exceptional_behavior

requires amount > balance

signals (BankException e)

e.getReason.equals("Amount too big")

@*/

public int debit(int amount) throws BankException

{ ... }

says a BankException must be thrown if amount >
balance

normal behavior has implicit ‘ signals(Exception)false’
exceptional behavior has implicit ‘ ensures false’

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.15/??

Example

/*@ normal_behavior

requires amount <= balance;

ensures ...

also

exceptional_behavior

requires amount > balance

signals (BankException e) ...

@*/

public int debit(int amount) throws BankException

{ ... }

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.16/??

Example

or, equivalently

/*@ requires true;

ensures \old(amount<=balance) && ...

signals (BankException e)

\old(amount>balance) && ...

@*/

public int debit(int amount) throws BankException

{ ... }

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.17/??

Exceptional behaviour

Moral: to keep things simple, disallow exceptions in specs
whenever possible

Eg, for

public void arraycopy(int[] src, int destOffset,

int[] dest, int destOffset, int length)

throws NullPointerException,

ArrayIndexOutOfBoundsException

write a spec that disallows any throwing of exceptions, and
only worry about specifying exceptional behaviour if this is
really needed elsewhere.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.18/??

Assignable clauses and
datagroups

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.19/??

Problems with assignable clauses

Assignable clauses

• tend to expose implementation details

private /*@ spec_public @*/ int x;

...

//@ assignable x,;
public void m(...) {....}

• tend to become very long

//@ assignable x, y, z[*],;

• tend to accumulate

//@ assignable x, f.x, g.y, h.z[*],;

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.20/??

Problems with assignable clauses

public class Timer{

/*@ spec_public @*/ int time_hrs, time_mins, time_secs;

/*@ spec_public @*/ int alarm_hrs, alarm_mins, alarm_secs;

//@ assignable time_hrs, time_mins, time_secs;

public void tick() { ... }

//@ assignable alarm_hrs, alarm_mins, alarm_secs ;

public void setAlarm(int hrs, int mins, int secs) { ... }
}

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.21/??

Solution: datagroups

public class Timer{

//@ public model JMLDatagroup time, alarm;

int time_hrs, time_mins, time_secs; //@ in time;

int alarm_hrs, alarm_mins, alarm_secs; //@ in alarm;

//@ assignable time;

public void tick() { ... }

//@ assignable alarm;

public void setAlarm(int hrs, int mins, int secs) { ... }

}

time and alarm are model fields , ie. specification-only fields

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.22/??

Datagroups

Datagroups provide an abstraction mechanism for
assignable clauses.

There’s a default datagroup objectState defined in
Object.java

It’s good practice to declare that all instance fields are in
objectState

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.23/??

Datagroups can be nested

public class Timer{

//@ public model JMLDatagroup time, alarm;//@ in objectState;

int time_hrs, time_mins, time_secs; //@ in time;

int alarm_hrs, alarm_mins, alarm_secs; //@ in alarm;

//@ assignable time;

public void tick() { ... }

//@ assignable alarm;

public void setAlarm(int hrs, int mins, int secs) { ... }

}

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.24/??

Assignable and arrays

Another implementation, using an array of 6 digits to
represent hrs:mns:secs

public class ArrayTimer{

/*@ spec_public @*/ char[] currentTime;

//@ invariant currentTime != null;

//@ invariant currentTime.length == 6;

//@ assignable currentTime[*];

public void tick() { ... }

...

}

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.25/??

Datagroups and arrays

Another implementation, using an array of 6 digits to
represent hrs:mns:secs

public class ArrayTimer{

//@ public model JMLDatagroup time;

char[] currentTime; //@ in time;

//@ maps currentTime[*] \into time;

//@ invariant currentTime != null;

//@ invariant currentTime.length == 6;

//@ assignable time;

public void tick() { ... }

...
}

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.26/??

Datagroups and interfaces

Datagroups are convenient in specs for interfaces.

public interface TimerInterface{

//@ model instance public JMLDatagroup time, alarm;

//@ assignable time;

public void tick();

//@ assignable alarm;

public void setAlarm(int hrs, int mins, int secs);

}

Classes implementing this interface are free to choose
which fields are in the datagroups.
Keyword instance is needed, because fields in interfaces are by
default static fields in Java. Interfaces in Java do not have instance
fields, but in JML they can have model instance fields

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.27/??

The problem with assignable clauses

Despite the abstraction possibilities offered by datagroups,
assignable clauses remain a bottlecneck both in program
specification and in program verification.

Note that the proof obligation corresponding to an assignable clause is
a very complicated one, involving a quantification over all fields not
mentioned in the assignable clause

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.28/??

Aliasing (revisited)

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.29/??

Aliasing

Aliasing is the root of all evil, for anyone trying to verify
imperative programs.

The ArrayTimer class just earlier is another nice example
to illustrate this.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.30/??

ArrayTimer example

Recall implementation using an array of 6 digits to
represent hrs:mns:secs

public class ArrayTimer{

char[] currentTime;

char[] alarmTime;

//@ invariant currentTime != null;

//@ invariant currentTime.length == 6;

//@ invariant alarmTime != null;

//@ invariant alarmTime.length == 6;

public void tick() { ... }

public void setAlarm(...) { ... }

}

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.31/??

ArrayTimer example

Things will go wrong if different instances of ArrayTimer
share the same alarmTime array, ie.

o.alarmTime == o’.alarmTime

for some o!=o’

ESC/Java2 may notice this, produce a correct, but puzzling,
warning.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.32/??

ArrayTimer example

To rule out such aliasing of eg. alarmTime fields:

public class ArrayTimer{

char[] currentTime;

//@ invariant currentTime.owner == this;

...

public ArrayTimer(...){

...;

currentTime = new char[6];

//@ set currentTime.owner == this;

...

}

(owner is a so-called ghost field, more about that later)

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.33/??

ArrayTimer example

Things will go wrong if an instance of ArrayTimer aliases
its alarmTime to its currentTime, ie.

o.alarmTime == o.currentTime

ESC/Java2 may notice this, produce a correct, but puzzling
warning.

You should add

//@ invariant alarmTime != currentTime;

to rule out such aliasing.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.34/??

Specification-only fields:
ghost and model fields

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.35/??

Ghost fields
Sometimes it is convenient to introduce an extra field, only
for the purpose of specification (aka auxiliary variable).

A ghost field is like a normal field, except that it can only
be used in specifications.

A special set command can be used to assign a value to a
ghost field.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.36/??

Ghost fields - example

Suppose the informal spec of

class SimpleProtocol {

public void start() { ... }

public void stop() { ... }
}

says that stop() may only be invoked after start(), and
vice versa.

This can be expressed using a ghost field, to represent the
state of the protocol.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.37/??

Ghost fields - example

class SimpleProtocol {

//@ public ghost boolean started;

//@ requires !started;

//@ assignable started;

//@ ensures started;

public void start() {

...

//@ set started = true; }

//@ requires started;

//@ assignable started;

//@ ensures !started;

public void stop() {

...

//@ set started = false; }
David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.38/??

Ghost fields - example

Maybe the object has some internal state that that records if
protocols is in progress, eg.

class SimpleProtocol {

//@ private ProtocolStack st;

...

public void start() {

...

st = new ProtocolStack(...);

... }

public void stop() {

...

st = null;

... }

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.39/??

Ghost fields - example

There may be a relation between the ghost field and some
other field(s) , eg.

class SimpleProtocol {

private ProtocolStack st;

//@ public ghost boolean started;

//@ invariant started <==> (st !=null);

//@ requires !started;

//@ assignable started;

//@ ensures started;

public void start() { ... }

//@ requires started;

//@ assignable started;

//@ ensures !started;
public void stop() { ... }

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.40/??

Ghost fields - example

We could now get rid of the ghost field, and write

class SimpleProtocol {

private /*@ spec public @*/ ProtocolStack st;

//@ requires st==null;

//@ assignable st;

//@ ensures st!=null;

public void start() { ... }

//@ requires st!=null;

//@ assignable st;

//@ ensures st==null;
public void stop() { ... }

but this is ugly and exposes implementation details.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.41/??

Model fields - example

Solution: use a model field

class SimpleProtocol {

private ProtocolStack st;

//@ public model boolean started;

//@ private represents started = (st != null);

//@ requires !started;

//@ assigable started;

//@ ensures started;

public void start() { ... }

//@ requires started;

//@ assigable started;

//@ ensures !started;
public void stop() { ... }

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.42/??

Model fields - example

A model field also provided an associated datagroup

class SimpleProtocol {

private ProtocolStack st; //@ in started;

//@ public model boolean started;

//@ private represents started = (st != null);

//@ requires !started;

//@ assigable started;

//@ ensures started;

public void start() { ... }

//@ requires started;

//@ assigable started;

//@ ensures !started;
public void stop() { ... }

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.43/??

Model vs ghost fields

Difference between ghost and model may be confusing!
Both exist only in JML specification, and not in the code.

• Ghost
• Ghost field is like a normal field.
• You can assign to it, using set, in JML annotations.

• Model
• Model field is an abstract field.
• Model field is a convenient abbreviation.
• You cannot assign to it.
• Model field changes its value whenever the
representation changes.

Model field is like ‘abstract value’ for ADT (algebraic data t ype),
represent clause is like ‘representation function’.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.44/??

Invariants

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.45/??

Invariants
Invariants – aka class invariants – are a common & very
useful notion.

In larger programs, the (only) interesting thing to specify
are the invariants.

However, the semantics is trickier than expected!

Invariant is implicitly included in pre- and postconditions of
method, and in postcondition of constructors. But there’s
more ...

In fact, invariants are a hot research topic.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.46/??

When should an invariant hold?
public class A {

B b;

int i=2; //@ invariant i >= 0

//@ ensures \result >=0;

public /*@ pure @*/ int get(){ return i; }

public void m(){

i--;

... ; // invariant possibly broken

i++;
}

An invariant can temporarily be broken.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.47/??

When should an invariant hold?
public class A {

B b;

int i=2; //@ invariant i >= 0

//@ ensures \result >=0;

public /*@ pure @*/ int get(){ return i; }

public void m(){

i--;

b.m(...); // invariant possibly broken

i++;
}

This may lead to problems if invocation of b.m involves an
invoking on the current object.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.48/??

When should an invariant hold?
Eg, suppose

public class B {

...

public void m(A a){

...

int j = a.get(); //@ assert i>=0;

...
}

The spec of get() suggests the assertion will be true.

But if get() is invoked when a’s invariant is broken, all
bets are off.

This is known as the call-back problem.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.49/??

When should an invariant hold?
Solution to the call-back problem:

A method invariant should hold in all so-called
visible states , which are all beginning and end
states of method invocations

So there’s more to invariants than just adding them to pre-
and postconditons.

NB all invariants of all objects should hold in visible states;
this clearly imposes impossible proof obligations.

ESC/Java2 looks only at the invariants of some objects; this
is a source of unsoundness.

Modular verification techniques for invariants are a
challenge, and still a hot topic of research.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.50/??

When should an invariant hold?
Sometimes you do want to invoke a method at a program
point where the invariant is broken. To do this without
ESC/Java2 complaining:

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.51/??

When should an invariant hold?
Sometimes you do want to invoke a method at a program
point where the invariant is broken. To do this without
ESC/Java2 complaining:

• A private method can be declared as helper method

private /*@ helper @*/ void m() { ... }

Invariants do not have to hold when such a helper
method is called.

Effectively, such methods are in-lined in verifications

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.52/??

When should an invariant hold?
Sometimes you do want to invoke a method at a program
point where the invariant is broken. To do this without
ESC/Java2 complaining:

• A private method can be declared as helper method

private /*@ helper @*/ void m() { ... }

Invariants do not have to hold when such a helper
method is called.

Effectively, such methods are in-lined in verifications

• add

//@ nowarn Invariant

in the line where this method call occurs.
NB this is unsafe, and a possible source of
unsoundness!

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.53/??

More problems with invariants

public class SortedLinkedList {

private int i;

private LinkedList next;

//@ invariant i > next.i;

public /*@ pure @*/ int getValue(){ return i; }

public /*@ pure @*/ int getNext(){ return next; }

public /*@ pure @*/ int getValue(){ return i; }

public void inc() { i++; }
}

inc won’t break this object’s invariant, but may break the
invariant of the object who has this object as it’s next.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.54/??

More problems with invariants

The essence of the problem is that the invariant of one
object o may depend on the state of another object o’.

When verifying the methods of o’, we have no way of
knowing if these may break invariants given in other
classes . . .

This is one of the sources of unsoundness of ESC/Java(2),
and most approaches to modular verification of OO
programs to date.

Only recently workable approaches for modular verification
of invariants have been proposed, and the last word has not
been said on this.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.55/??

	Core JML
	More advanced JML features
	{Large ed Visibility }
	Visibility
	Visibility
	Visibility: 	exttt {spec_public}
	{Large ed Exceptions and JML }
	Exceptional specifications
	Exceptions allowed by specs
	Exceptions allowed by specs
	Ruling out exceptions
	Ruling out exceptions
	may vs must throw an exception
		exttt {exceptional_behavior}
	Example
	Example
	Exceptional behaviour
	{Large ed Assignable clauses and datagroups }
	Problems with assignable clauses
	Problems with assignable clauses
	Solution: datagroups
	Datagroups
	Datagroups can be nested
	Assignable and arrays
	Datagroups and arrays
	Datagroups and interfaces
	The problem with assignable clauses
	{Large ed Aliasing (revisited)}
	Aliasing
	ArrayTimer example
	ArrayTimer example
	ArrayTimer example
	ArrayTimer example
	{Large ed Specification-only fields: \ 	exttt {ghost} and 	exttt {model} fields}
	Ghost fields
	Ghost fields - example
	Ghost fields - example
	Ghost fields - example
	Ghost fields - example
	Ghost fields - example
	Model fields - example
	Model fields - example
	Model vs ghost fields
	{Large ed Invariants}
	Invariants
	When should an invariant hold?
	When should an invariant hold?
	When should an invariant hold?
	When should an invariant hold?
	When should an invariant hold?
	When should an invariant hold?
	When should an invariant hold?
	More problems with invariants
	More problems with invariants

