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To do:
 Write static body VC gen.
 Define meta functions in a sensible order.
 Loop invariants (and/or “-Fast” translation of loops).
 The logic should assume labels to be distinct.
 Rename the guarded command block L: S end to something that doesn’t say “block” to avoid

confusion with the Java block statement.
 Reconcile our AST with Raymie’s and Cormac’s.
 Pass over document for consistency (for example, make LS not be a keyword).
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 Choose “freshly generated variable names” to produce meaningful counterexample contexts.
 Note that ESC/Java currently does not provide a way to monitor the contents of an array.
 Write down what we assume about null about fields of null.  For example, allocTime(null) < pre$alloc

and f[null] != null for non_null fields f.  (Hm, note that our assumptions are not consistent in the initial
state if two inconsistent invariants are declared (like x == 0 and x == 2), or if an invariant f == null is
declared for a non_null field f.)

 State, in the ESC/Java Annotation Reference Manual, that the formal parameters of a method override
are not allowed to mention the non_null modifier (instead, it implicitly inherits any non_null modifier
of the corresponding formal parameter of the method being overridden).  Also, state that the free
variables of a requires clause of a method must be as visible as the method itself.  Also say that an
ensures clause of a constructor is allowed to mention RES.  Also, state that a private field is allowed to
be mentioned in a postcondition only if the method is final or private or if the enclosing class is final—
otherwise, a syntactic warning is produced.

 Give location information for each check command.
 Introduce Java+ grammar for routine declarations, and use where appropriate.
 Reconcile error names with ESCJ 17.
 Update ESCJ 17 to use max instead of min for lock sets.
 Make index of meta functions.

0 Introduction
This note describes a translation of annotated Java into a guarded command-like language for the purpose
of generating verification conditions.  This note is not about resolution of names in Java, so we assume
where convenient that names have been unique-ified.  In particular, we assume the names of types, fields,
and methods have been unique-ified.  In the case of methods, unique-ification takes care of overloading by
taking into account the types of formals. 

We assume that we are given an AST (as described in section 1) for a Java method (or other body of code)
to be checked, where all names (local variables, parameters, fields, methods, types) have already been
resolved.  Our goal is to produce a guarded command gc (as described in section 2) such that, with the
background predicate (call it BG) produced according to ESCJ 8, The logic of ESC/Java, the condition 

BG ==> wlp.gc.(true, true, false) 
is valid if and only if m meets its specification.  That is, the condition 

BG && ! wlp.gc.(true, true, false) 
is satisfiable if and only if m does not meet its specification.  It behooves us now to explain wlp and "meets
its specification". 

For any guarded command gc and predicates N, X, and W, the predicate wlp.gc.(N, X, W) holds in exactly
those initial states from which execution of gc either terminates normally in (a state satisfying) N,
terminates exceptionally in X, goes wrong in W, or doesn't terminate at all.  The computation of (an
approximation to) wlp is described in section 2.

When we say that a Java method meets its specification, we have a particular notion in mind.  This notion
turns out to be unsound, because there are several kinds of errors that we don't check for.  For one thing, we
do not consider integer overflows or infinite loops to be violations of a method's specification.  Also, we
know that our treatment of modifies clauses is unsound, a choice we made in hope of making the ESC/Java
tool easier to use without significantly undermining its ability to find errors.  Furthermore, user-supplied
annotations can introduce unsoundness, in both obvious ways--for example, by suppressing certain checks
or introducing bogus assumptions--and in non-obvious ways--for example, by giving a lock order that is
not a partial order.

Are there other sources of unsoundness?  It would useful to have a document describing all the sources of unsoundness and
incompleteness in the ESC/Java checker, including those introduced by the Java-to-GC translator, the VC generator, and the
prover.
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1 Java-like AST
We use italics for non-terminals and bold face for keywords.  Sometimes we prefix a non-terminal with a
descriptive comment (word) ending in an underscore.  An asterisk denotes any number of occurrences of
the immediately preceding terminal, non-terminal, or parenthesized construction.

We take the following non-terminals as primitives:  Identifier, Literal, UnaryOp, BinOp.

Stmt ::=
   block Stmt* end
|  var Modifier* Identifier [= Expr]

Note that the Expr might be an array initializer expression.  The Identifier introduced goes out of scope at the end of the
innermost enclosing block, for, or switch statement, or method body.

|  label Identifier Stmt
 The label is implicit in the address of the AST node. (Cormac’s annotations are in this font).

|  skip
|  eval Expr

Note that assignments are expressions, so the front end translates assignment statements into eval statements.  Similarly, all
method invocation statements are translated into eval statements.  Note that the type of Expr is void if Expr is an invocation of a
void method.

|  if (Expr) Stmt else Stmt
We assume that omitted else clauses have been replaced by else skip.

|  Identifier: while (Expr) { loop_invariant SpecExpr* } Stmt
We assume that every while, do, and for statement has an explicit label, possibly provided by the front end.
This label is implicit in the address of the AST node. After typechecking, the statement that is being aborted or continued
BreakStmt and ContinueStmt AST node can be retrieved via the static method FlowInsensitiveChecks.getBranchLabel. 
The LabelStmt AST node is therefore not used by the Java-to-GC translation.

|  Identifier: do { loop_invariant Expr* } Stmt while (Expr)
|  Identifier: for (Stmt* ;  Expr ;  Expr*) { loop_invariant Expr* } Stmt

The Stmt* is the for initializer.  It consists of either one var statement (whose scope is the entire for statement) or a list of
expressions.  The first Expr is the loop guard.  The first Expr* is a list of for update expressions.  The final Stmt is the loop body.

|  break Identifier  |  continue Identifier
We assume that every break and continue statement has an explicit label, possibly provided by the front end.
This label is implicit in the address of the AST node.

|  return [Expr]
|  throw Expr
|  try Stmt catch (Type Identifier Stmt)* end

Each Type specifies a class of exceptions for which the corresponding Stmt is a handler; the Identifier may be used in the
corresponding Stmt to denote the exception caught.

|  try Stmt finally Stmt
We assume the front end translates the Java try catch finally statement into a try finally statement whose first component is a
try catch.

|  Identifier: switch (Expr) (case [Expr] Stmt*)* end
An omitted Expr means the default case.  We assume there is exactly one default case.  If the programmer doesn’t supply one,
the translation can add case break Identifier (where the label Identifier is the same as that of the switch statement) as the first or
last case.
The translation does not add the default case, if one is not given in the source program.

|  synchronized (Expr) Stmt
The Expr denotes an object treated as a mutex.

|  construct Identifier (Expr*)
This statement is a constructor invocation (see ExplicitConstructorInvocation [JLS, 19.8.5]).  It is called ConstructorInvocation
in the ESC/Java front end.
We assume that when the Java source for a constructor body for a proper subtype of Object does not begin with an explicit
constructor invocation, the ESC/Java front end supplies the implicit constructor invocation as defined by [JLS, 8.6.5].
The Identifier (which the type checker will already have disambiguated using the static types of this and of the Expr*) names the
superclass or sibling constructor to be called.  The Expr* are the arguments to that constructor.
The Identifier is given via the decl field of the MethodInvocation AST node.

|  assert SpecExpr  |  assume SpecExpr
These statements come from ESC/Java annotations rather than from Java proper.

|  unreachable

Expr ::=
   this
|  Literal

3



|  Designator
|  UnaryOp Expr
|  Expr BinOp Expr
|  Expr CondBinOp Expr

A CondBinOp is one of conditional binary operators || and &&.
|  (Expr ? Expr : Expr)
|  newarray Type Expr*

The Type specifies the element type of the array to be allocated.  The Expr* specifies the dimensions of the array to be allocated.
|  array Type Expr*

The Type specifies the element type of the array to be allocated and initialized.  The Expr* specifies the initial values of the
elements, and the number of Expr* indicates the length of the array to be allocated.

|  Expr instanceof Type
The Type must be an object type.

|  (Type) Expr
The Type is the type to which the Expr is to be cast.

|  Designator = Expr
The language requires that the static type of the Expr be assignment covertible to the static type of the Designator.  When
assignment conversion may change the value of the right-hand side, for example when widening a long to a float, we assume
that the ESC/Java front end supplies an explicit cast.
The front end does not supply the explicit case. We may want to add a brief intermediate pass that would do this.

|  Designator BinOp = Expr
|  Designator BinOp

The Java expression D++ falls into the Designator BinOp category, where the BinOp is + (which + it is depends on the type of
D).  The Java expression ++D is preprocessed into D += 1, and hence falls into the Designator BinOp = Expr category.
What happened with these expressions in Cormac and Raymie’s AST?
The pre- and post- increment and decrement operators are translated into UnaryExpr nodes, where the tag is INC or DEC for
the pre- operators, and POSTFIXINC or POSTFIXDEC for the post- operators.

|  MethodInvocation

Why does Cormac and Raymie’s AST contain a ParenExpr class?  And what about the AmbiguousVariableAccess?  Can we
assume that these have been translated away by the front end by the time we get control?
The ParenExpr class preserves information about where parens occurred in the source program. This information is useful for
pretty-printing. The AmbiguousVariableAccess is removed by the name resolution pass, as is the
AmbiguousMethodInvocation AST node.

Designator ::=
   Identifier

The Identifier denotes a local variable, parameter, or global variable.
Cormac and Raymie’s AST has a class called LocalVariableAccess.  Does that include parameters and globals?
The LocalVariableAccess AST includes parameters and globals.

|  Expr . Identifier
The Identifier denotes a field.

|  Expr[Expr]

There are four kinds of method invocations.  In each case, we assume that the Identifier has been fully
disambiguated.

MethodInvocation ::=
In all of these cases, the Identifier is given via the decl field of the MethodInvocation AST node.

   new Type Identifier (Expr*)
The Type specifies the class of the object to be allocated.  The Identifier (which the type checker will already have disambiguated
using the Type and the types of the Expr*) names the constructor.  The Expr* are the arguments to the constructor.

|  Identifier (Expr*)
The Identifier names a static method.  (The AST actually represents this form of method invocation as Type.Identifier(Expr*),
but this document can ignore the Type, because we assume that the Identifier has been fully disambiguated.)

|  Expr . Identifier (Expr*)
In this case, the Identifier may be either an instance method or a static method.  If the Identifier names an instance method, then
the result of evaluating the first Expr will be supplied as the actual self parameter to the method call.  If the Identifier names a
static method, then the Expr will be evaluated for side effects and the result discarded.  In either case, the static type of the Expr
will already have been used by the type checker to disambiguate the Identifier.

|  super . Identifier (Expr*)
In this case, too, the Identifier may be either an instance method or a static method.  If the Identifier names an instance method,
then this will be supplied as the actual self parameter to the method call.  If the Identifier names a static method, then the
keyword super is ignored by the translation.  In either case, the direct superclass of the static type of this will already have been
used by the type checker to disambiguate the Identifier.
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SpecExpr ::=
   Expr

This Expr must be side-effect free.
Actually, this is really supposed to be an Expr in which any subexpression may be a SpecExpr.

|  (forall (Type Identifier)* SpecExpr)
|  (exists (Type Identifier)* SpecExpr)
|  (lblpos Label SpecExpr) 
|  (lblneg Label SpecExpr) 
|  PRE(SpecExpr) 
|  fresh(SpecExpr)

Type ::=
   boolean | byte | char | double | float | int | long | short
|  Identifier

The Identifier is a declared class or interface, possibly a pre-declared name like Object.
|  Type[]

2 Guarded command AST
Our translation targets a guarded command language whose syntax is given below.

We take the following non-terminals as primitives:  Identifier, Literal, UnaryOp, BinOp, Function.  The
first four of these are supersets of the corresponding non-terminals in the Java AST.  The guarded
command non-terminal variable includes every Java variable, field, and label, as well as some variables
introduced by the translation.  The non-terminal Function includes the functions described in the Logic of
ESC/Java.   boy, this paragraph needs fixin’.

command ::=
   lhs = rhs
|  skip
|  raise
|  assert rhs
|  assume rhs
|  var variable* in command end
|  command ; command
|  command ! command
|  command [] command
|  loop { inv condition* } command end
|  call MethodName ( rhs* )

lhs ::=
   variable
|  variable[rhs]
|  variable[rhs][rhs]

rhs ::=
   lhs
|  Literal
|  UnaryOp rhs
|  rhs BinOp rhs
|  Function (arg_rhs*)
|  (forall variable+ :: rhs)
|  (exists variable+ :: rhs)
|  (lblneg Identifier rhs)
|  (lblpos Identifier rhs)

condition ::=
  errorName, location :  rhs
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In the last line, errorName is the name Free or an error name as described ESCJ 17, ESC/Java Annotation
Reference Manual, and location is Java source code location.  If errorName is Free, the location field is not
used and can be set to the null location.

In many cases in this document, we have omitted the location of a condition triple.  In those cases, the implicit location refers to
a location near where the Java+ expression that is translated into the rhs is found.  This document should probably make a precise
choice of location explicit.

We define three deconstructor functions on conditions:

ErrorName[[ EN, L :  e ]] == EN
Location[[ EN, L :  e ]] == L
Predicate[[ EN, L :  e ]] == e

In addition, we define the following shorthands:

if e then S0 else S1 end    ==    (assume e ; S0 [] assume ! e ; S1) 
block L:  S end    ==    (S ! if ec == L then skip else raise end)
raise L    ==    (EC = L ; raise)
fail    ==    assume false
modify lhs    ==    var x in lhs = x end

where e is a rhs, S, S0, S1 are command, L is a label, and ec is a special variable introduced by the
translation.

We also define a shorthand check whose grammar is:

  check location, condition

and whose definition is:

check LUse, EN, LDecl :  e    ==
  #if (EN is Free)
    skip
  #elsif (checking of EN is enabled at LUse and at LDecl)
    assert (lblneg MakeLabel[[ EN, LDecl, LUse ]] e)
  #else
    assume e
  #end

where MakeLabel somehow concatenates its arguments into an identifier.
In many cases in this document, we have omitted LUse.  In those cases, the implicit location refers to a location near where the
Java+ expression or statement that is translated into the check is found.  This document should probably make a precise choice of
location explicit.

2.0 Semantics of guarded commands 
The commands are defined in terms of predicate transformers.  For any command S and predicates N and X
on the post-state of S, we define ejp[[ S, N, X ]] as a weak precondition sufficient to guarantee that any
normally terminating execution of S establishes N, that any exceptionally terminating execution of S
establishes X, and that no execution of S goes wrong.  In particular, we have

    ejp[[ S, N, X ]] ==> wlp.S.(N, X, false)

For any N, X, and W, we have:

wlp.(v = e).(N, X, W) == N[ v  e ]
wlp.(v[e0] = e).(N, X, W) == N[ v  store(v, e0, e) ]
wlp.(v[e0][e1] = e).(N, X, W) == N[ v  store(v, e0, store(select(v, e0), e1, e) ]

6



wlp.skip.(N, X, W) == N
wlp.raise.(N, X, W) == X
wlp.(assert e).(N, X, W) == (e && N) || (!e && W)
wlp.(assume e).(N, X, W) == (e ==> N)
wlp.(var v1 … vn in S end).(N, X, W) == (ALL v1 … vn :: wlp.S).(N, X, W))
                                                                 (* provided v1 … vn are free in N, X, and W *)
wlp.(S0 ; S1, ).(N, X, W) == wlp.S0.(wlp.(S1).(N, X, W), X, W)
wlp.(S0 ! S1, ).(N, X, W) == wlp.S0.(N, wlp.S1.(N, X, W), W)
wlp.(S0 [] S1).(N, X, W) == wlp.S0.(N, X, W) && wlp.S1.(N, X, W)

For any N and X, we define:

ejp[[ v = e, N, X ]] == N[ v  e ]
ejp[[ v[e0] = e, N, X ]] == N[ v  store(v, e0, e) ]
ejp[[ v[e0][e1] = e, N, X ]] == N[ v  store(v, e0, store(select(v, e0), e1, e) ]
ejp[[ skip, N, X ]] == N
ejp[[ raise, N, X ]] == X
ejp[[ assert e, N, X ]] == e && N
ejp[[ assume e, N, X ]] == (e ==> N)
ejp[[ var v1 … vn in S end, N, X ]] == (ALL v1 … vn :: ejp[[ S, N, X ]])
                                                             (* provided v1 … vn are free in N and X *)
ejp[[ S0 ; S1, N, X ]] == ejp[[ S0, ejp[[ S1, N, X ]], X ]]
ejp[[ S0 ! S1, N, X ]] == ejp[[ S0, N, ejp[[ S1, N, X ]] ]]
ejp[[ S0 [] S1, N, X ]] == ejp[[ S0, N, X ]] && ejp[[ S1, N, X ]]

Thus, any command composed only of assignment, skip, raise, assert, assume, var, ;, !, and [], we have:

    ejp[[ S, N, X ]] == wlp.S.(N, X, false)

The semantics of the commands loop and call are more elaborate and are described next.

2.1 Semantics of loop
The predicate wlp.(loop { inv J1 … Jn } S end).(N, X, W) is defined as the weakest predicate P that
satisfies the equation:

    P == wlp.(check J1 ; … ; check Jn ; S).(P, X, W)

Since we don’t have a way to compute arbitrary weakest fixpoints, we define the ejp of a loop by
desugaring the loop into more primitive guarded commands.

ejp[[ loop { inv J1 … Jn } S end, N, X ]] ==
  ejp[[ DesugarLoop[[ loop { inv J1 … Jn } S end ]], N, X ]]

ESC/Java features two ways to desugar loop, selected by a command-line switch:

DesugarLoop[[ Loop, N, X ]] ==
  #if (-loopsafe is used)
    DesugarLoopSafe[[ Loop, N, X ]]
#else
    DesugarLoopFast[[ Loop, N, X ]]
  #end

These satisfy, for any loop Loop, and any N, X, and W,

  wlp.DesugarLoopSafe[[ Loop ]].(N, X, W) ==> wlp.Loop.(N, X, W) 
  wlp.Loop.(N, X, W) ==> wlp.DesugarLoopFast[[ Loop ]].(N, X, W) 
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We now define the two loop desugarings.  The first is defined as follows.

DesugarLoopFast[[ loop { inv J1 … Jn } S end ]] ==
  CheckLoopInvariants[[ J1 … Jn, “Initially”, Loc ]] ;
  S ;
  CheckLoopInvariants[[ J1 … Jn, “AfterIteration”, Loc ]] ;
  fail

where Loc is the source location of the Java loop that gave rise to this loop command, and
CheckLoopInvariants is defined as follows:

CheckLoopInvariants[[ J1 … Jn, suffix, Loc ]] ==
  check Loc, ErrorName[[ J1 ]]suffix, Location[[ J1 ]] :  Predicate[[ J1 ]] ;
  … ;
  check Loc, ErrorName[[ Jn ]]suffix, Location[[ Jn ]] :  Predicate[[ Jn ]]

The other loop desugaring is defined as follows.

DesugarLoopSafe[[ loop { inv J1 … Jn } S end ]] ==
      ( CheckLoopInvariants[[ J1 … Jn, “Initially”, Loc ]] ; fail )
  [] ( Modify[[ NTargets[[ S, {} ]] ]] ;
        assume Predicate[[ J1 ]] ; … ; assume Predicate[[ Jn ]] ;
        S ;
        CheckLoopInvariants[[ J1 … Jn, “AfterIteration”, Loc ]] ;
        fail )

where Loc is the source location of the Java loop that gave rise to this loop command, and where 

Modify[[ {v1 … vn} ]] ==
  modify v1 ; … ; modify vn

Modify[[ bottom ]] ==
  fail

where bottom is a special “set” that satisfies the following properties, for any set of variables V (possibly
bottom or {}):

 bottom  V  ==  V
 V  bottom  ==  V
 bottom – V  ==  bottom

(It may seem from these properties that bottom equals {}.  However, bottom is different, because
ShakeUp, NTargets, and XTargets treat bottom and {} differently.  For example, Modify[[ {} ]] == skip
whereas Modify[[ bottom ]] == fail.)

Functions NTargets and XTargets take two arguments, a guarded command and a set of variables (possibly
bottom), and return a set of variables (possibly bottom).  Informally, NTargets[[ S, V ]] is the set of
variables that can be modified as a result of a normal-outcome execution of the command S ; Modify[[ V ]]
(where failing is considered not a normal-outcome execution).  Similarly, XTargets[[ S, V ]] is the set of
variables that can be modified as a result of a exceptional-outcome execution of the command S ! (Modify[[
V ]] ; raise) (where failing is considered not an exceptional-outcome execution).  Here are their definitions:
For any command C,

NTargets[[ C, bottom ]] == bottom
XTargets[[ C, bottom ]] == bottom

For any set of variables V other than bottom,
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NTargets[[ v = e, V ]] ==  V  {v}
NTargets[[ v[e0] = e1, V ]] ==  V  {v}
NTargets[[ v[e0][e1] = e2, V ]] ==  V  {v}
XTargets[[ lhs = e, V ]] ==  bottom

NTargets[[ skip, V ]] ==  V
XTargets[[ skip, V ]] ==  bottom

NTargets[[ raise, V ]] ==  bottom
XTargets[[ raise, V ]] ==  V

NTargets[[ assert e, V ]] ==  V
XTargets[[ assert e, V ]] ==  bottom

NTargets[[ assume e, V ]] ==  V
XTargets[[ assume e, V ]] ==  bottom

We can do a more precise job for NTargets[[ assume e, V ]], by returning bottom if e is false.  Part of this slack is picked up by
including fail as an actual AST node, rather than as sugar, and generating fail in the translation where we otherwise would have
hardcoded assume false.

NTargets[[ fail, V ]] ==  bottom
XTargets[[ fail, V ]] ==  bottom

NTargets[[ var v1 … vn in C end, V ]] ==  NTargets[[ C, V ]] – {v1, …, vn}
XTargets[[ var v1 … vn in C end, V ]] ==  XTargets[[ C, V ]] – {v1, …, vn}

We require that v1 … vn not be elements of V.

NTargets[[ C0 ; C1, V ]] ==  NTargets[[ C0, NTargets[[ C1, V ]] ]] 
XTargets[[ C0 ; C1, V ]] ==  XTargets[[ C0, V ]]  NTargets[[ C0, XTargets[[ C1, V ]] ]]

NTargets[[ C0 ! C1, V ]] ==  NTargets[[ C0, V ]]  XTargets[[ C0, NTargets[[ C1, V ]] ]]
XTargets[[ C0 ! C1, V ]] ==  XTargets[[ C0, XTargets[[ C1, V ]] ]] 

NTargets[[ C0 [] C1, V ]] ==  NTargets[[ C0, V ]]  NTargets[[ C1, V ]]
XTargets[[ C0 [] C1, V ]] ==  XTargets[[ C0, V ]]  XTargets[[ C1, V ]]

NTargets[[ loop { inv J1 … Jn} C end, V ]] ==  bottom
XTargets[[ loop { inv J1 … Jn} C end, V ]] ==  NTargets[[ C, XTargets[[ C, V ]] ]]  XTargets[[ C, V ]]

NTargets[[ call m(e1 … en), V ]] == V  Domain[[ wt ]]
XTargets[[ call m(e1 … en), V ]] == V  Domain[[ wt ]]

where wt is the whole-targets map in the whole-targets clause of the method specification returned by
GetSpecForCall[[ m, Sc ]], where Sc is the current scope (see below for all of these definitions).

Note.  A simpler definition of NTargets that seems good enough for the first cut of ESC/Java is the following.  Note that there is
then no need for the XTargets function or the bottom value.

NTargets[[ S, V ]] == SimpleTargets[[ S ]]  V

SimpleTargets[[ v = e ]] == {v}
SimpleTargets[[ v[e0] = e1 ]] == {v}
SimpleTargets[[ v[e0][e1] = e2 ]] == {v}
SimpleTargets[[ skip ]] ==  {}
SimpleTargets[[ raise ]] ==  {}
SimpleTargets[[ assume e ]] ==  {}
SimpleTargets[[ fail ]] ==  {}
SimpleTargets[[ var v1 … vn in C end ]] ==  SimpleTargets[[ C ]] – {v1, …, vn}
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SimpleTargets[[ C0 ; C1 ]] ==  SimpleTargets[[ C0 ]]  SimpleTargets[[ C1 ]]
SimpleTargets[[ C0 ! C1 ]] ==  SimpleTargets[[ C0 ]]  SimpleTargets[[ C1 ]]
SimpleTargets[[ C0 [] C1 ]] ==  SimpleTargets[[ C0 ]]  SimpleTargets[[ C1 ]]
SimpleTargets[[ C0 ; C1 ]] ==  SimpleTargets[[ C0 ]]  SimpleTargets[[ C1 ]]
SimpleTargets[[ loop { inv J1 … Jn} C end ]] == SimpleTargets[[ C ]]
SimpleTargets[[ call m(e1 … en) ]] == Domain[[ wt ]]

where wt is as described above.

2.2 Semantics of call
The semantics of call m(e1 … en) depends on the method specification associated with m in the scope
where the call appears.  A scope is the set of declarations visible from a given class (or interface).  To
describe the semantics of call, we will in this section describe the abstract syntax of a method specification
and the desugaring of a call command into more primitive commands.  Later in this document (section 7),
we describe how the method specification is computed in a given scope.

A method specification has the form:

spec T m(p1 … pn) throws {X1 … Xx}
precondition P1 … precondition Pj
targets D1 … Dk
whole-targets wt
postcondition Q1 … postcondition Qm

In this method specification:
 m is a method name.
 p1 … pn are formal parameter names, possibly including the special name this.
 T is a result type or void.
 P1 … Pj are conditions whose predicates’ free variables are drawn from the top-level program

variables (fields, static fields, and special program variables like elems and alloc) and p1 … pn.  Those
conditions whose error name is Free are called free preconditions; the others are called checked
preconditions.

 D1 … Dk are designator expressions (that is, guarded command lhs’s) known as target designators.
 wt is a map from variables to variables.  In particular, wt maps the set of variables one gets from

“shaving” the target designators D1 … Dk to similar variables adorning with the suffix @pre (see
section 7.2.0).  “Whole targets” refers to the variables in the domain of wt.

 Q1 … Qm are conditions, the free variables of whose predicates are drawn from the top-level program
variables, p1 … pn, the variables in image of wt, and the special result variables EC, RES, and XRES.
Those conditions whose error name is Free are called free postconditions; the others are called
checked postconditions.

We consider p1 … pn and the variables in the image of wt to be bound within the method specification.
All other free variables are either static fields, instance variables, or special variables.  The variables in the
image of wt do not occur in the list of target designators, despite the fact that any index expression
occurring in a target designator refers to the value of the index expression in the pre-state.

Usually, the formal parameter names p1 … pn correspond to formal parameters declared by the
programmer.  For instance methods, however, p1 is the special variables this and p2 … pn correspond to
the formal parameters declared by the programmer.

All preconditions P1 … Pj are assumed on entry to implementations, but only the checked preconditions
are checked at call sites.  The free preconditions need not be checked at call sites because they are
guaranteed by the Java type system and other checking mechanisms (like non_null).  Similarly, all
postconditions Q1 … Qm are assumed after calls, but only the checked postconditions are checked on exit
from implementations.  The free postconditions need not be checked on exit from implementations because
they are guaranteed by the Java type system and other checking mechanisms.
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Given that m is a method name associated in the current scope with the template method specification
above, the command call m(e1 … en) occurring at a location L desugars as follows:

  var p1@L … pn@L in
    p1@L = e1 ;  … ;  pn@L = en ; 

    check L, P1 ; … ; check L, Pj ;
Note that the check desugars to skip for free preconditions.

    var pt[[ Image[[ wt ]] ]] in
      #for w in Domain[[ wt ]] do
        assume pt[[ wt[[ w ]] ]] == w ;

Do we get better performance if instead of this assumption we do the semantically equivalent assignment pt[[ wt[[ w ]] ]] = w ?
      #end

      modify IndexSubst[[ D1, pt ]] ; … ; modify IndexSubst[[ Dk, pt ]] ; 
      modify EC ; modify RES ; modify XRES ;

      assume pt[[ Predicate[[ Q1 ]] ]] ; … ; assume pt[[ Predicate[[ Qm ]] ]] ;

      #if ({X1 … Xx} is nonempty) 
The reason for producing the following command only conditionally is one of concern for performance:  It would be correct, but
we conjecture inefficient, to always emit the following command.

        ( assume EC == ec$return [] assume EC == ec$throw ; raise )
      #end
    end
  end

in which pt is the map {p1  p1@L, …, pn  pn@L}  Remap[[ wt, L ]], where

Remap[[ wt, L ]] ==
  #for w in Domain[[ wt ]] do
    {wt[[ w ]]  w@L} 
  #end

And where IndexSubst is defined as follows: 

IndexSubst[[ g, pt ]] ==
  g

IndexSubst[[ f[ E ], pt ]] ==
  f[ pt[[ E ]] ]

IndexSubst[[ e[E0][E1] , pt ]] ==
  e[ pt[[ E0 ]] ][ pt[[ E1 ]] ]

3 Special variables and literals
The translation introduces several special variables and literals.

The special variables EC (exception code), RES, and XRES are used is the translation of return, throw,
break, continue, and method calls, all of which give rise to uses of the guarded command raise.  By
convention, the guarded commands generated by the translation always set EC (and possibly RES or XRES)
before performing a raise.  The enclosing exception handler (that is, the command T in S ! T) then tests
EC (and possibly RES or XRES) when determining how to proceed.

More specifically, before a raise that corresponds to a Java return, the guarded command sets EC to the
special literal ec$return and sets RES to the return value, if there is one.  Before a raise that corresponds to
a Java throw, the guarded command sets EC to the special literal ec$throw and sets XRES to the exception
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thrown.  The translation of a method call uses a combination of these.  Before a raise that corresponds to a
Java break L, the guarded command sets EC to L.  Finally, before a raise that corresponds to a Java
continue L, the guarded command sets EC to continue$L, which is a name derived from the name L.

The special variable elems models the state of all arrays.

The special variable alloc represents the current allocation time.

The special variable LS represents the set of locks held by the current thread.

4 Translating expressions
In this section, we describe the translation of Java expressions.  Since Java expressions may have side
effects and guarded command expressions must not, it is occasionally necessary to introduce temporary
variables.  For example, the Java expression

    x += (x = 3);

may be translated into the guarded command

    var oldx in oldx = x ; x = 3 ; x = oldx + x end

Our translation introduces temporary variables where these may be useful.  Throughout the translation, we
assume that the temporary variables introduced have fresh names; the choice of these names may affect the
readability of satisfying assignments, but we not address that issue here.

In this section, we define a translation function TrExpr for expressions.  The signature of this function is
TrExpr[[ E, p, V, r ]], where E is a Java expression, p is a set of protect expressions (defined below), V is a
set of temporary variable names, and r is a guarded command expression.  E and p are in-parameters, V is
an in-out-parameter, and r is an out-parameter.  TrExpr[[ E, p, V, r ]] returns a guarded command C that
essentially evaluates the side effects of E, raises any exception raised by E, and causes any error of E.  This
command may include assignments to freshly generated temporary variables; as a side effect, TrExpr adds
these temporary variables to V.  Another side effect of TrExpr is to set r to an guarded command expression
whose value in the normal post-state of C corresponds to the Java value of E.  The expression r has the
property of being insensitive to side effects of any protect expression in p.

A protect expression is either a Java expression or something of the form F=, where F is map variable.  An
expression e is insensitive to side effects of a Java expression E when no normally terminating evaluation
of E can change the value of e.  An expression e is insensitive to side effects of F= when it is insensitive to
arbitrary modifications of F.

Before defining TrExpr, we describe three subroutines of which we will make frequent use, Clash, Impure,
and Protect.

For any guarded command expression e and any protect expression q, Clash[[ e, q ]] must be true if e is
sensitive to any side effect of q, but is allowed to be true more often than that.  For now, Clash is
conservatively defined as follows:  For any Java expression E and map variable F,

Clash[[ e, E ]] ==
  (e mentions any Java non-final local variable, non-final field, elems, alloc, or RES) && Impure[[ E ]]

Clash[[ e, F= ]] ==
  (e mentions F)

In future versions of ESC/Java, we may use a more aggressive definition of Clash.

For any Java expression E, Impure[[ E ]] is true if E contains any
 assignment (=, +=, etc.),
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 pre-increment, pre-decrement, post-increment, post-decrement (++ or --),
 object creation (new), or
 method invocation.
Note that the possibility of raising an exception or going wrong does not imply that an expression is
impure; only state changes do.

The signature of Protect is Protect[[ e, p, V, r ]], where e is a guarded command expression, and p, V, and
r are as in the signature of TrExpr.  In a nut shell, Protect sets r to an expression that is equivalent to e, but
is insensitive to side effects of the protect expressions in p.  In doing so, it may make use of a temporary
variable v, which it adds to V, and generate (i.e., return) a guarded command that assigns the value e to v.

Protect[[ e, {E1 … En}, V, r ]] ==
  #if (Clash[[ e, E1 ]] || … || Clash[[ e, En ]])
    #V = V v ;
    #r = v ;
    v = e ;
  #else
    #r = e;
  #end

An explanation of our notation is in order.  We use assignment statements where the left-hand side begins
with a # to denote meta-assignments.  Variables type set in italics denote fresh guarded command variables.
Lines that don’t begin with # (like the assignment  v = e;  in this example) show a guarded command
fragment returned by Protect.

The actual ESC/Java implementation simply uses booleans where we use sets of protect expressions.  Where we have written a
set {p1 … pn} as a protect argument to TrExpr, the implementation passes the boolean Impure[[ p1 ]] || … || Impure[[ pn ]],
where Impure[[ pi ]] is defined as described above if pi is a Java expression and as true if pi has the form F=.  Since TrExpr
usually passes its protect argument to Protect, the actual ESC/Java implementation uses a boolean for this parameter, too, and
implements Protect as follows:

Protect[[ e, p, V, r ]] ==
  #if (p && (e mentions any Java non-final local variable, non-final field, elems, or alloc))
    #V = V v ;
    #r = v ;
    v = e ;
  #else
    #r = e;
  #end

In the translation below, we use x, xj to denote variables, E, Ej to denote Java expressions, C to denote any
literal, and T to denote a type.

TrExpr[[ this, p, V, r ]] ==
  #r = this

TrExpr[[ C, p, V, r ]] ==
  #r = C

TrExpr[[ x, p, V, r ]] ==
  ReadCheck[[ x ]] ;
  Protect[[ x, p, V, r ]]

where

ReadCheck[[ x ]] ==
  #if (x declared with uninitialized)
    check InitializationViolation :  init$x ;
  #end
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  #if (x declared with defined_if P)
    check DefinednessViolation :  TrSpecExpr[[ P ]] ;
  #end
  #if (x declared with the monitored_by expressions MU1 … MUn where 0 < n)
    check SharingViolation :
               (TrSpecExpr[[ MU1 ]] != null && LS[ TrSpecExpr[[ MU1 ]] ]) ||
               … ||
               (TrSpecExpr[[ MUn ]] != null && LS[ TrSpecExpr[[ MUn ]] ]) ;
  #end

TrExpr[[ E0[E1], p, V, r ]] ==
  #var e0 e1 in
    TrExpr[[ E0, {E1}, V, e0 ]] ;
    TrExpr[[ E1, {}, V, e1 ]] ;
    ArrayAccessCheck[[ e0, e1 ]] ;
    Protect[[ elems[e0][e1], p, V, r ]]
  #end

where

ArrayAccessCheck[[ e0, e1 ]] ==
  check NullPointerException :  e0 != null ;
  check IndexOutOfBoundsExceptionLower :  0 <= e1 ;
  check IndexOutOfBoundsExceptionUpper :  e1 < array$length(e0)

TrExpr[[ E.F, p, V, r ]] ==
  #var e in
    TrExpr[[ E, {}, V, e ]] ;
    check NullPointerException :  e != null ;
    ReadCheck[[ F[e] ]] ;
    Protect[[ F[e], p, V, r ]]
  #end

where

ReadCheck[[ F[e] ] ==
  #if (F declared with defined_if P)
    check DefinednessViolation :  TrSpecExpr[[ P, {this  e}, {} ]] ;
  #end
  #if (F declared with the monitored and monitored_by expressions MU1 … MUn where 0 < n)
    check SharingViolation :
               (TrSpecExpr[[ MU1, {this  e}, {} ]] != null && LS[ TrSpecExpr[[ MU1, {this  e}, {} ]] ]) ||
               … ||
               (TrSpecExpr[[ MUn, {this  e}, {} ]] != null && LS[ TrSpecExpr[[ MUn, {this  e}, {} ]] ]) ;
  #end

TrExpr[[ unaryOp E, p, V, r ]] ==
  #var e in
    TrExpr[[ E, {}, V, e ]] ;
    Protect[[ unaryOp(e), p, V, r ]]
  #end 

TrExpr[[ E0 binOp E1, p, V, r ]] ==
  #var e0 e1 in
     TrExpr[[ E0, {E1}, V, e0 ]] ; 
     TrExpr[[ E1, {}, V, e1 ]] ;
    #if (binOp is integer / or integer %)
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      check ArithmeticException :  e1 != 0 ;
    #end
    Protect[[ binOp(e0, e1), p, V, r ]]
  #end

TrExpr[[ E0 || E1, p, V, r ]] ==
  #var e0 e1 in
    TrExpr[[ E0, {E1}, V, e0 ]] ; 
    if ! e0 then
      TrExpr[[ E1, {}, V, e1 ]]
    end ;
    Protect[[ bool$or(e0, e1), p, V, r ]]
  #end

TrExpr[[ E0 && E1, p, V, r ]] ==
  #var e0 e1 in
    TrExpr[[ E0, {E1}, V, e0 ]] ; 
    if e0 then
      TrExpr[[ E1, {}, V, e1 ]]
    end ;
    Protect[[ bool$and(e0, e1), p, V, r ]]
  #end

TrExpr[[ (E0 ? E1 : E2), p, V, r ]] ==
  #var e0 e1 e2 in
    TrExpr[[ E0, {E1, E2}, V, e0 ]] ; 
    if e0 then
      TrExpr[[ E1, {}, V, e1 ]]
    else
      TrExpr[[ E2, {}, V, e2 ]]
    end ;
    Protect[[ term$conditional(e0, e1, e2), p, V, r ]]
  #end

TrExpr[[ newarray T E1 E2 … En, p, V, r ]] ==
  #var e1 e2 … en in
    TrExpr[[ E1, {E2 … En}, V, e1 ]] ;
    TrExpr[[ E2, {E3 … En}, V, e2 ]] ;
    … ;
    TrExpr[[ En, {}, V, en ]] ;
    #V = V a alloc´ ;
    assume array$fresh(a, alloc, alloc´, elems,
                                      shapeMore(e1, shapeMore(e2, …(shapeOne(en))…)),
                                      array(array(…(array(T))…)), zero) ;
    alloc = alloc´ ;
    #r = a
  #end

The number of applications of array around T in this assumption is n.  The meta variable zero denotes the
zero-equivalent value for type T.

TrExpr[[ array T E1 E2 … En, p, V, r ]] ==
  #var e1 e2 … en in
    TrExpr[[ E1, {E2 … En}, V, e1 ]] ;
    TrExpr[[ E2, {E3 … En}, V, e2 ]] ;
    … ;
    TrExpr[[ En, {}, V, en ]] ;
    #V = V a alloc´ ;
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    assume alloc < vAllocTime(a) && vAllocTime(a) < alloc´ ;
    assume a != null && typeof(a) == array(T) && array$length(a) == n ;
    assume elems[a][0] == e1 && … && elems[a][n-1] == en ;
    alloc = alloc´ ;
    #r = a
  #end

TrExpr[[ E instanceof T, p, V, r ]] ==
  #var e in
    TrExpr[[ E, {}, V, e ]] ;
    Protect[[ is(e, T), p, V, r ]]
  #end

TrExpr[[ (T) E, p, V, r ]] == 
  #var e in
    TrExpr[[ E, {}, V, e ]] ;
    #if (T is an object type)
      check ClassCastException :  is(e, T)
      Protect[[ e, p, V, r ]]
    #else
      Protect[[ cast(e, T), p, V, r ]]
    #end
  #end

4.0 Assignment expressions
There are three kinds of assignment operators, namely direct assignment (as in x = 6), update assignment
(as in x += 6), and post-update assignment (as in x++).  There are also three kinds of l-values, namely
variables (as in x = 6), instance variables (as in o.f = 6), and array elements (as in a[i] = 6).  So, all in all,
we consider nine cases.  This results in some duplication, but we felt that this would increase clarity (and
besides, 3*3 is not that much larger than 3+3).

TrExpr[[ x = E, p, V, r ]] ==
  #var e in
    TrExpr[[ E, {}, V, e ]] ;
    WriteCheck[[ x, e ]] ;
    x = e ;
    #if (x declared with uninitialized)
      init$x = bool$true ;
    #end
    Protect[[ x, p, V, r ]]
  #end

This comes from [JLS, 15.25.1].

where

WriteCheck[[ x, e ]] ==
  #if (x declared with non_null)
    check NullAssignmentViolation :  e != null ;
  #end
  #if (x declared with the monitored_by expressions MU1 … MUn where 0 < n)
    check SharingViolation :
               (TrSpecExpr[[ MU1 ]] != null || … || TrSpecExpr[[ MUn ]] != null) &&
               (TrSpecExpr[[ MU1 ]] == null || LS[TrSpecExpr[[ MU1 ]] ] ) &&
               … &&
               (TrSpecExpr[[ MUn ]] == null || LS[TrSpecExpr[[ MUn ]] ] ) ;
  #end
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TrExpr[[ x binOp= E, p, V, r ]] ==
  #var old e in
    ReadCheck[[ x ]] ;
    Protect[[ x, {E}, V, old ]] ; 
    TrExpr[[ E, {}, V, e ]] ;
    #if (binOp is integer / or integer %)
      check ArithmeticException :  e != 0 ;
    #end
    #if (range type of binOp is the static type of x)
      WriteCheck[[ x, binOp(old, e) ]] ;
      x = binOp(old, e) ;
    #else
      WriteCheck[[ x, cast(binOp(old, e), T) ]] ; // where T denotes the static type of x
      x = cast(binOp(old, e), T) ;
    #end
  #end
  Protect[[ x, p, V, r ]]

This comes from [JLS, 15.25.2].
Note that we need not set init$x to true, since the ReadCheck has checked that it is already true.
Section [JLS, 15.25] says that the result of this assignment expression is the value of the variable after the assignment has
occurred; hence, we return x instead of binOp(old, e).

TrExpr[[ x binOp, p, V, r ]] ==
  ReadCheck[[ x ]] ;
  #V = V old ;
  old = x ;
  WriteCheck[[ x, binOp(x, 1) ]] ;
  x = binOp(x, 1) ;
  #r = old

Note that we need not set init$x to true, since the ReadCheck has checked that it is already true.
Note that this translation ignores the possibility of wrap-around.

TrExpr[[ E0.F = E1, p, V, r ]] ==
  #var e0 e1 in
    TrExpr[[ E0, {E1, F=}, V, e0 ]] ; 
    check NullPointerException :  e0 != null ;
    TrExpr[[ E1, {}, V, e1 ]] ;
    WriteCheck[[ F[e0], e1 ]] ;
    F[e0] = e1;
    Protect[[ F[e0], p, V, r ]]
  #end

The ordering of the checks is spelled out in [JLS, 15.25.1].

where

WriteCheck[[ F[e0], e1 ]] ==
  #if (F declared with non_null)
    check NullAssignmentViolation :  e1 != null ;
  #end
  #if (F declared with the monitored and monitored_by expressions MU1 … MUn where 0 < n)
    check SharingViolation :
              (TrSpecExpr[[ MU1, {this  e0}, {} ]] != null || … || TrSpecExpr[[ MUn, {this  e0}, {} ]] != null)
              &&
              (TrSpecExpr[[ MU1, {this  e0}, {} ]] == null || LS[ TrSpecExpr[[ MU1, {this  e0}, {} ]] ]) &&
              … &&
              (TrSpecExpr[[ MUn, {this  e0}, {} ]] == null || LS[ TrSpecExpr[[ MUn, {this  e0}, {} ]] ]) ;
  #end
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TrExpr[[ E0.F binOp = E1, p, V, r ]] ==
  #var e0 old e1 in
    TrExpr[[ E0, {E1, F=}, V, e0 ]] ; 
    check NullPointerException :  e0 != null ;
    ReadCheck[[ F[e0] ]] ;
    Protect[[ F[e0], {E1}, V, old ]] ;
    TrExpr[[ E1, {}, V, e1 ]] ;
    #if (binOp is integer / or integer %)
      check ArithmeticException :  e1 != 0 ;
    #end
    #if (range type of binOp is the static type of E0.F)
      WriteCheck[[ F[e0], binOp(old, e1) ]] ;
      F[e0] = binOp(old, e1) ;
    #else
      WriteCheck[[ F[e0], cast(binOp(old, e1), T) ]] ; // where T denotes the static type of E0.F
      F[e0] = cast(binOp(old, e1), T) ;
    #end
    Protect[[ F[e0], p, V, r ]]
  #end

This comes from [JLS, 15.25.2].

TrExpr[[ E.F binOp, p, V, r ]] ==
  #var e in
    TrExpr[[ E, {F=}, V, e ]] ; 
    check NullPointerException :  e != null ;
    #V = V old ; 
    ReadCheck[[ F[e] ]] ;
    old = F[e] ;
    WriteCheck[[ F[e], binOp(old, 1) ]] ;
    F[e] = binOp(old, 1) ;
    #r = old
  #end

Note that this translation ignores the possibility of wrap-around.

TrExpr[[ E0[E1] = E2, p, V, r ]] ==
  #var e0 e1 e2 in
    TrExpr[[ E0, {E1, E2, elems=}, V, e0 ]] ;
    TrExpr[[ E1, {E2, elems=}, V, e1 ]] ;
    TrExpr[[ E2, {}, V, e2 ]] ;
    ArrayAccessCheck[[ e0, e1 ]] ;
    #if (static element type of E0 is a non-final object type)
      check ArrayStoreException :  is(e2, elemType(typeof(e0))) ;
    #end
    elems[e0][e1] = e2 ;
    Protect[[ elems[e0][e1], p, V, r ]]
  #end

The order of evaluation and checking (in particular, that E2 is evaluated before before any array access check is done) is
specified in [JLS, 15.25.1].  Note that this is different from the order in which evaluation and checking is done for E0.F = E1, see
above.  It is also different from the order in which this check is done in the next case, E0[E1] binOp= E2 [JLS, 15.25.2].  The
reason for this wisdom is unbeknownst to us.

TrExpr[[ E0[E1] binOp = E2, p, V, r ]] ==
  #var e0 e1 old e2 in
    TrExpr[[ E0, {E1, E2, elems=}, V, e0 ]] ;
    TrExpr[[ E1, {E2, elems=}, V, e1 ]] ;
    ArrayAccessCheck[[ e0, e1 ]] ;
    Protect[[ elems[e0][e1], {E2}, V, old ]] ;
    TrExpr[[ E2, {}, V, e2 ]] ;
    #if (binOp is integer / or integer %)
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      check ArithmeticException :  e2 != 0 ;
    #end
    #if (range type of binOp is the static type of E0[E1])
      elems[e0][e1] = binOp(old, e2) ;
    #else
      elems[e0][e1] = cast(binOp(old, e2), T) ;  // where T denotes the static type of E0[E1]
    #end
    Protect[[ elems[e0][e1], p, V, r ]]
  #end

This comes from [JLS, 15.25.2].

TrExpr[[ E0[E1] binOp, p, V, r ]] ==
  #var e0 e1 in
    TrExpr[[ E0, {E1, elems=}, V, e0 ]] ;
    TrExpr[[ E1, {elems=}, V, e1 ]] ;
    ArrayAccessCheck[[ e0, e1 ]] ;
    #V = V old ;
    old = elems[e0][e1] ;
    elems[e0][e1] = binOp(old, 1) ;
    #r = old
  #end

Note that this translation ignores the possibility of wrap-around.

4.1 Method call expressions
Java features a number of different call expressions, namely instance method calls, static method calls, and
constructor calls.  (There are also constructor call statements.  These will be described in the section 6 on
statements.)

The abstract syntax of an instance method is:
Expr . Identifier (Expr*)

We treat the Expr before the “.” as a parameter of the call.

The abstract syntax of a static method call can be one of:
Identifier (Expr*)
Expr . Identifier (Expr*)
super . Identifier (Expr*)

In the two latter cases, what goes before the “.” is not a parameter of the call.

The abstract syntax of a class instance creation expression [JLS, 15.8] is:
new Type Identifier (Expr*)

We treat this simply as a constructor invocation. 

The translation of a method invocation or constructor invocation emits a code fragment containing a call
command.

TrExpr[[ m (E1 E2 … En), p, V, r ]] ==
  #var e1 … en in
    TrExpr[[ E1, {E2 … En}, V, e1 ]] ; … ; TrExpr[[ En, {}, V, en ]] ;
    call m(e1 … en) ;
    Protect[[ RES, p, V, r ]]
  #end

TrExpr[[ E0 . m (E1 E2 … En), p, V, r ]] ==
  #var e0 … en in
    #if (m is a static method)
      TrExpr[[ E0, {}, V, e0 ]] ;
    #else
      TrExpr[[ E0, {E1 … En}, V, e0 ]] ;
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    #end
    TrExpr[[ E1, {E2 … En}, V, e1 ]] ; … ; TrExpr[[ En, {}, V, en ]] ;
    #if (m is a static method)
      call m(e1 … en) ; 
    #else
      call m(e0 e1 … en) ;
    #end
    Protect[[ RES, p, V, r ]]
  #end

TrExpr[[ super . m (E1 E2 … En) , p, V, r ]] ==
  #var e1 … en in
    TrExpr[[ E1, {E2 … En}, V, e1 ]] ; … ; TrExpr[[ En, {}, V, en ]] ;
    #if (m is a static method)
      call m(e1 … en) ; 
    #else
      call m(this e1 … en) ;
    #end
    Protect[[ RES, p, V, r ]]
  #end

TrExpr[[ new T m (E1 E2 … En), p, V, r ]] ==
  #var e1 … en in
    TrExpr[[ E1, {E2 … En}, V, e1 ]] ; … ; TrExpr[[ En, {}, V, en ]] ;
    call m(e1 … en) ;
    assume typeof(RES) == T ;
    Protect[[ RES, p, V, r ]]
  #end

5 Translating specification expressions
This section describes a function TrSpecExpr that translates a specification expression into a guarded
command expression.  Recall from ESCJ 17, ESC/Java Annotation Reference Manual, specification
expressions are similar to Java expressions, but they are pure (that is, they are side-effect free), they cannot
raise exceptions, they are total (that is, their evaluation cannot “go wrong”), and they may include
additional constructs such as quantifiers and PRE and fresh.  Guarded command expressions are similar to
specification expressions in that they are pure and total and may include quantifiers.  However, guarded
command expressions do not include PRE and fresh, for example.

Function TrSpecExpr[[ E, sp, st ]], where E is an specification expression and sp and st are domain-
disjoint partial maps from variables to guarded command expressions, returns a guarded command
expression corresponding to E, in which every occurrence of a variable v in E and in Domain[[sp]] has
been replaced by sp[[v]], and every occurrence of a variable v in a PRE expression in E and in Domain
[[st]] has been replaced by st[[v]]. We require that if E contains a fresh expression, then alloc is in Domain
[[st]].

In other parts this document, as a notational convenience, we write TrSpecExpr[[ E ]] for TrSpecExpr[[ E,
{}, {} ]].  Here, as a notational convenience, we abuse the notation sp[[v]] to mean
#if (v in Domain[[sp]])
  sp[[v]]
#else
  v
#end
and similarly for st.

TrSpecExpr[[ this, sp, st ]] ==
  sp[[this]]
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TrSpecExpr[[ C, sp, st]] ==  /* where C is a literal */
  C

TrSpecExpr[[ v, sp, st ]] ==  /* where v is a local variable, parameter, static field, RES, or LS */
  sp[[v]]

TrSpecExpr[[ E.g, sp, st ]] ==  /* where g is a static field */
  sp[[g]] 

TrSpecExpr[[ E.f, sp, st ]] ==  /* where f is an instance variable */
  sp[[f]] [ TrSpecExpr[[ E, sp, st ]] ]

TrSpecExpr[[ E0[E1], sp, st ]] ==
  sp[[elems]] [ TrSpecExpr[[ E0, sp, st ]] ] [ TrSpecExpr[[ E1, sp, st ]] ]

TrSpecExpr[[ E[*], sp, st ]] ==
  sp[[elems]] [ TrSpecExpr[[ E, sp, st ]] ] 

TrSpecExpr[[ unOp E, sp, st ]] ==  /* where unOp is a unary operator, possibly typeof or elemtype or min
*/
  unOp( TrSpecExpr[[ E, sp, st ]] )

TrSpecExpr[[ E0 binOp E1, sp, st ]] == /* where binOp is a binary operator, possibly && or || or ==> or
<: */
  binOp( TrSpecExpr[[ E0, sp, st ]], TrSpecExpr[[ E1, sp, st ]] )

Here, we are using prefix notation for applications of all binary operators.  Elsewhere in this document, we frequently use infix
notation. 

TrSpecExpr[[ G ? E0 : E1, sp, st ]] ==
  term$conditional( TrSpecExpr[[ G, sp, st ]], TrSpecExpr[[ E0, sp, st ]], TrSpecExpr[[ E1, sp, st ]] )

TrSpecExpr[[ E instanceof T, sp, st ]] ==
  is( TrSpecExpr[[ E, sp, st ]], TrType[[ T ]] )

TrSpecExpr[[ (T) E, sp, st ]] ==
  cast( TrSpecExpr[[ E, sp, st ]], TrType[[ T ]] )

TrType[[ T ]] ==  /* where T is a primitive type or declared type */
  T

TrType[[ T[] ]] ==
  array( TrType[[ T ]] )

TrSpecExpr[[ (forall (T1 x1) … (Tn xn) E), sp, st ]] ==
  /* where we require the domains of sp and st to be disjoint from {x1, …, xn} */

We believe our translation never violates this requirement, but it might be worthwhile to include a runtime check in the
translator.

  (forall x1 … xn :: TypeCorrectAs[[ x1, T1 ]] && … && TypeCorrectAs[[ xn, Tn ]]
                                ==> TrSpecExpr[[ E, sp, st ]] )

We should also replace occurrences of alloc in TypeCorrectAs[[ x1, T1 ]] && … && TypeCorrectAs[[ xn, Tn ]] with sp[[
alloc ]].

TypeCorrectAs[[ v, T ]] ==
  TypeAndNonnullCorrectAs[[ v, T, false ]]

TypeAndNonnullCorrectAs[[ v, T, isNonNull ]] ==
  is(v, T)
  #if (T is a reference type)
    && allocTime(v) < alloc
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    #if (isNonNull)
      && v != null
    #end
  #end

An optimization would be to generate typeof(v) <: T instead of is(v, T) if T is a reference type and isNonNull is true.

TrSpecExpr[[ (exists (T1 x1) … (Tn xn) E), sp, st ]] ==
  /* where we require the domains of sp and st to be disjoint from {x1, …, xn} */

We believe our translation never violates this requirement, but it might be worthwhile to include a runtime check in the
translator.

  (exists x1 … xn :: TypeCorrectAs[[ x1, T1 ]] && … && TypeCorrectAs[[ xn, Tn ]]
                              && TrSpecExpr[[ E, sp, st ]] )

We should also replace occurrences of alloc in TypeCorrectAs[[ x1, T1 ]] && … && TypeCorrectAs[[ xn, Tn ]] with sp[[
alloc ]].

TrSpecExpr[[ (lblpos L E), sp, st ]] ==
  (lblpos L TrSpecExpr[[ E, sp, st ]] )

TrSpecExpr[[ (lblneg L E), sp, st ]] ==
  (lblneg L TrSpecExpr[[ E, sp, st ]] )

TrSpecExpr[[ PRE(E), sp, st ]] ==
  TrSpecExpr[[ E, sp  st, {} ]]

It is okay to pass the empty map as the third parameter because our annotation language forbids uses of PRE or fresh within an
argument of PRE.

TrSpecExpr[[ fresh(E), sp, st ]] ==
  TrSpecExpr[[ E, sp, st ]] != null && st[[alloc]] < allocTime( TrSpecExpr[[ E, sp, st ]] )

We omit the requirement allocTime( TrSpecExpr[[ E, sp, st ]] ) < alloc because this condition is introduced by other
mechanisms when it is needed.

6 Translating statements
TrStmt[[ S, V ]], where S is a Java statement and V is a set of temporary variable names, translates S into a
guarded command.  Temporary variables used in that command can either be local to the command or
added to the in-out parameter V.  We assume again that variables introduced in translation are fresh. 

TrStmt[[ block S1 … Sn end, V ]] ==
    var x1 … xk init$xi … init$xj in
      TrStmt[[ S1, V ]] ; … ; TrStmt[[ Sn, V ]]
    end

where x1 … xk are the variables introduced by those of the statements S1 … Sn that are Java var
statements, and xi … xj are the (not necessarily contiguous) subset of x1 … xk that are declared as
uninitialized.

TrStmt[[ var M1 … Mn x, V ]] ==
  skip

TrStmt[[ var M1 … Mn x = E, V ]] ==
  #if (x declared with uninitialized)
    Assign[[ x, E, V ]]
  #else
    Eval[[ x = E, V ]]
  #end

where

Assign[[ x, E, V ]] ==
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  #var e in
    TrExpr[[ E, {}, V, e ]] ;
    x = e ;
  #end

and where

Eval[[ E, V ]] ==
  #var junk in
    TrExpr[[ E, {}, V, junk ]]
  #end

Note that, if x is declared as uninitialized, then Eval[[ x = E, V ]] sets init$x to true, whereas Assign[[ x, E,
V ]] does not assign to init$x (except perhaps as a side effect of evaluating E).

TrStmt[[ label L S, V ]] ==
  block L:  TrStmt[[ S, V ]] end

TrStmt[[ skip, V ]] ==
  skip

TrStmt[[ eval E, V ]] ==
  Eval[[ E, V ]]

TrStmt[[ if (E) S0 else S1, V ]] ==
  #var e in
    TrExpr[[ E, {}, V, e ]] ;
    if e then TrStmt[[ S0 ]] else TrStmt[[ S1 ]] end
  #end

TrStmt[[ break L, V ]] ==
  EC = L ; raise

TrStmt[[ continue L, V ]] ==
  EC = continue$L ; raise

TrStmt[[ return, V ]] ==
  EC = ec$return ; raise

TrStmt[[ return E, V ]] ==
  Assign[[ RES, E, V ]] ;
  EC = ec$return ; raise

TrStmt[[ throw E, V ]] ==
  Assign[[ XRES, E ]] ;
  check NullPointerException :  XRES != null ;
  EC = ec$throw ; raise

We perform the XRES != null check here, and so does Sun’s Java implementation, but it is not documented in either JLS or the
Java bytecode specification.
Although Sun’s Java implementation turns throwing null into a NullPointerException, we could actually give this error a
different name that would better describe the error.

TrStmt[[ try S catch (T1 x1 S1) (T2 x2 S2) … (Tn xn Sn) end, V ]] ==
  TrStmt[[ S, V ]] !
  if  EC != ec$throw then skip else
    if typeof(XRES) <: T1 then var x1 in assume x1 == XRES ; TrStmt[[ S1, V ]] end else
      if typeof(XRES) <: T2 then var x2 in assume x2 == XRES ; TrStmt[[ S2, V ]] end else
        …
          if typeof(XRES) <: Tn then var xn in assume xn == XRES ; TrStmt[[ Sn, V ]] end else
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            raise
          end
        …
      end
    end
  end

TrStmt[[ try S0 finally S1, V ]] ==
  #var C0, C1 in
    #C0 = TrStmt[[ S0, V ]] ;
    #V = V ec res xres ;
    #C1 = TrStmt[[ S1, V ]] ;
    ( C0 !
      assume ec == EC && res == RES && xres == XRES ;
      C1 ;
      EC = ec ; RES = res ; XRES = xres ; raise
    ) ; C1
  #end

TrStmt[[ L: switch (E) (case [E1] S11 … S1n1) … (case [Ek] Sk1 … Sknk) end, V ]] ==
  var x1 … xk init$xi … init$xj in
    #V = V e ;
    Assign[[ e, E, V ]] ;
    block L:
      (  (  (  (  …  (  (  assume C1
                                ; TrStmt[[ S11, V ]] ; … ; TrStmt[[ S1n1, V]]
                             )
                         [] assume C2
                         )
                         ; TrStmt[[ S21, V ]] ; … ; TrStmt[[ S2n2, V ]]
                   …
                )
             [] assume C(k-1)
             )
             ; TrStmt[[ S(k-1)1, V ]] ; … ; TrStmt[[ S(k-1)nk-1, V ]]
         )
      [] assume Ck
      )
      ; TrStmt[[ Sk1, V ]] ; … ; TrStmt[[ Sknk, V ]]
    end
  end

where x1 … xk are the variables introduced by those of the statements S11 … Sknk that are Java var
statements, xi … xj are the (not necessarily contiguous) subset of x1 … xk that are declared as
uninitialized, and Ci is e == TrSpecExpr[[ Ei ]] if Ei is mentioned, or
        e != TrSpecExpr[[ E1 ]] && … && e != TrSpecExpr[[ E(i-1) ]] &&
        e != TrSpecExpr[[ E(i+1) ]] && … && e != TrSpecExpr[[ Ek ]]
if Ei is omitted.

This translation of the switch statement relies on the assumption that all the case labels Ei are constant expressions that evaluate
to distinct values, just like the Java language specification requires [JLS, 14.9].

TrStmt[[ synchronized (E) S, V ]] ==
  #V = V mu ; 
  Assign[[ mu, E, V ]] ;
  check LockingOrderViolation :  mutex$atmost(max(LS), mu) || LS[mu] ;

We could introduce an annotation or command-line switch to drop the second disjunct, thus disallowing reentrant locking.
  TrSynchronizedBody[[ mu, S, V ]]
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where

TrSynchronizedBody[[ mu, S, V ]] ==
  #V = V newLS ;
  assume (mutex$atmost(max(LS), mu) && mu == max(newLS)) || 
                (LS[mu] && newLS == LS) ;
  assume newLS == store(LS, mu, bool$true) ;
  assume newLS == asLockSet(newLS) ;
  ( TrStmt[[ S, V ]] )[LS  newLS]

An alternative translation of the synchronized statement would be:

TrStmt[[ synchronized (E) S, V ]] ==
  … as before until after the assume command …
  #V = V oldLS ;
  assume oldLS = LS ;
  LS = newLS ;
  TrStmt[[ try S finally LS = oldLS, V ]]

However, with this alternative translation, there is a risk that the prover will need to do a case analysis on normal versus
exceptional termination of S in order to establish that the value of LS is the same after the synchronized statement as before.

The substitution in the actual translation can alternatively be implemented by passing a locking set variable name as a new
parameter of TrStmt and of TrExpr, emitting this new parameter where the translation now emits LS.  As another alternative, the
current locking set name could be kept in a global variable.

TrConstructorCallStmt[[ construct m (E1 E2 … En), T, V ]] ==
  #var e1 … en in
    TrExpr[[ E1, {E2 … En}, V, e1 ]] ; … ; TrExpr[[ En, {}, V, en ]] ;
    call m(e1 … en) ;
    this = RES
  #end

This is the only place where this is assigned.

TrStmt[[ assert SE, V ]] ==
  check AssertionViolation :  TrSpecExpr[[ SE ]]

TrStmt[[ assume SE, V ]] ==
  assume TrSpecExpr[[ SE ]]

TrStmt[[ unreachable, V ]] ==
  check ReachabilityViolation :  false

6.0 Translating loops
This section defines TrStmt on loops in terms of a function MakeLoop, which is also defined in this section.

TrStmt[[ L: while (G) { loop_invariant J1 … Jn } S, V ]] ==
  #var W = {}, CG = Guard[[ G, W ]], CS = TrStmt[[ S, W ]] in
    MakeLoop[[ var W in CG ; block continue$L :  CS end end, J1 … Jn, L, V ]]
  #end

TrStmt[[ L: do { loop_invariant J1 … Jn } S while (G), V ]] ==
  #var W = {}, CS = TrStmt[[ S, W ]], CG = Guard[[ G, W ]] in
    MakeLoop[[ var W in block continue$L :  CS end ; CG end, J1 … Jn, L, V ]]
  #end

TrStmt[[ L: for (var M1 … Mn x [= E] ; G ; E1 … En) { loop_invariant J1 … Jn } S, V ]] ==
Out of curiosity, does our annotation language allow one of x’s modifiers to be uninitialized?

  #var W = {}, CG = Guard[[ G, W ]], CS = TrStmt[[ S, W ]],
                     CE = ( Eval[[ E1, W ]] ; … ; Eval[[ En, W ]] ) in
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    var x in
      TrStmt[[ var M1 … Mn x [= E], V ]] ;
      MakeLoop[[ var W in CG ; block continue$L :  CS end ; CE end, J1 … Jn, L, V ]]
    end
  #end

TrStmt[[ L: for (F1 … Fk ; G ; E1 … En) { loop_invariant J1 … Jn } S, V ]] ==
  #var W = {}, CG = Guard[[ G, W ]], CS = TrStmt[[ S, W ]],
                CE = ( Eval[[ E1, W ]] ; … ; Eval[[ En, W ]] ) in
    Eval[[ F1, V ]] ; … ; Eval[[ Fk, V ]] ;
    MakeLoop[[ var W in CG ; block continue$L :  CS end ; CE end, J1 … Jn, L, V ]]
  #end

We now define MakeLoop.  For any guarded command Body, two-state specification expressions J1 … Jn
denoting invariants, label L, and any V,

MakeLoop[[ Body, J1 … Jn, L, V ]] ==
  #var LoopTargs = NTargets[[ Body, {} ]], wt = MakeSubst[[ LoopTargs, L ]] in
    block L:
      var wt[[ LoopTargs ]] in
        #for w in LoopTargs do
          assume wt[[ w ]] == w ;

Should this be an assumption or an assignment?  The choice may have performance implications.
        #end
        loop
          { inv LoopInvariantViolation :  TrSpecExpr[[ J1, {}, wt ]]
                   …
                   LoopInvariantViolation :  TrSpecExpr[[ Jn, {}, wt ]]
                   LoopObjectInvariants[[ LoopTargs ]] }
          #for w in LoopTargs do
            TargetTypeCorrect[[ w, wt ]] ;
          #end
          Body
        end
      end
    end
  #end

If we use DesugarLoopFast (section 2.1), then the commands generated by the calls to TargetTypeCorrect (all of which are
assume commands) are redundant and can be omitted.
It may sometimes be desirable to leave out the loop invariants generated by the call to LoopObjectInvariants.  This could be
under the control of an ESC/Java command-line switch, but we conjecture that most ESC/Java users would want to omit the call
to LoopObjectInvariants precisely when DesugarLoopFast (section 2.1) is used.

where, for any list of variables v1 … vm and location L, MakeSubst is defined as follows: 

MakeSubst[[ v1 … vm, L ]] ==
  {v1  v1@L, …, vm  vm@L}

MakeSubst allocates the AST nodes for the adorned names.

and where, for any list of variables LoopTargs, LoopObjectInvariants is defined as follows:

LoopObjectInvariants[[ LoopTargs ]] ==
  #for every static invariant J in scope, whose free variables intersect with LoopTargs
    ObjectInvariantViolationForLoop :  TrSpecExpr[[ J ]]
  #end
  #for every object invariant J in scope, whose free variables intersect with LoopTargs
    ObjectInvariantViolationForLoop :  (ALL this :: this != null ==> TrSpecExpr[[ J ]] )
  #end
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and where, for any Java expression G, Guard is defined as follows:

Guard[[ G, V ]] ==
  #var g in
    TrExpr[[ G, {}, V, g ]] ;
    if g then skip else raise L end
  #end

and where, for any variable w and variable map wt, TargetTypeCorrect is defined as follows:

TargetTypeCorrect[[ w, wt ]] ==
  #if (w is a local variable or static field)
    assume TypeCorrect[[ w ]]
  #elsif (w is an instance variable)
    assume FieldTypeCorrect[[ w ]] ;
  #elsif (w is elems)
    assume ElemsTypeCorrect[[ w ]] ;
  #elsif (w is alloc)
    assume wt[[ alloc ]] < alloc ;
  #elsif (w is an init$ variable)
    assume wt[[ w ]] ==> w
  #end

TypeCorrect[[ v ]] ==
  #let T be the declared type of v in
    #if (v is declared with non_null)
      TypeAndNonnullCorrectAs[[ v, T, true ]]
    #else
      TypeAndNonnullCorrectAs[[ v, T, false ]]
    #end
  #end

FieldTypeCorrect[[ f ]] ==
  #let T be the declared type of f in
    f == asField(f, T)
    #if (T is a reference type)
      && fClosedTime(f) < alloc
      #if (v is declared with non_null)
        && (ALL s :: allocTime(s) < alloc ==> f[s] != null)

Do we need the antecedent?
We have intentionally omitted the conjuncts s != null && is(s, T) from the antecedent, because we think they are not needed.
We had better check that we haven’t done some other simplification elsewhere that would require f[null] == null.

      #end
    #end
  #end

ElemsTypeCorrect[[ e ]] ==
  e == asElems(e) && eClosedTime(e) < alloc

7 Synthesizing method specifications
In this section, we explain how to synthesize a method specification from an annotated Java method
declaration and a scope.  In particular, for a method m, a scope Sc, and list of variables SynTargs (called
syntactic targets), we define two functions GetSpecForCall[[ m, Sc ]] and GetSpecForBody[[ m, Sc,
SynTargs ]], each of which returns a method specification of the form described in section 2.1:

spec T m(p1 … pn) throws {X1 … Xx}
precondition P1 … precondition Pj
targets D1 … Dk
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whole-targets wt
postcondition Q1 … postcondition Qm

The two functions are defined as follows:

GetSpecForCall[[ m, Sc ]] ==
  ExtendSpecForCall[[ GetCommonSpec[[ m, Sc ]], Sc ]]

GetSpecForBody[[ m, Sc, SynTargs ]] ==
  ExtendSpecForBody[[ GetCommonSpec[[ m, Sc ]], Sc, SynTargs ]]

SynTargs will in fact always be the syntactic targets of the body of the method, see section 8.1.
The fact that ExtendSpecForBody takes a list of syntactic targets as a parameter may seem a little odd:  Is the meaning of the
method specification influenced by the implementation of the method?  The reason for this parameter is so that
ExtendSpecForBody can reduce the number of checked postconditions it adds, by suppressing those that are tautologies in the
light of the body.

GetCommonSpec[[ m, Sc ]] ==
  TrMethodDecl[[ FilterMethodDecl[[ GetCombinedMethodDecl[[ m ]], Sc ]] ]]

where GetCombinedMethodDecl, FilterMethodDecl, TrMethodDecl, ExtendSpecForCall, and
ExtendSpecForBody are defined below.

The function GetCombinedMethodDecl combines the declaration of m with the declarations of the methods
that m overrides, producing a method declaration of the form:

method T m(p1 … pn) throws {X1 … Xx}
requires P1 … requires Pk
modifies w1 … wu
ensures Q1 … ensures Qh

In particular, GetCombinedMethodDecl is responsible for:

 Assembling the signature T m(p1 … pn) throws {X1 … Xx}.  In the case of an instance method, this
process includes prepending this to the list of declared parameters.  In the case of a constructor, the
return type T is the class containing the constructor declaration.  We assume that m is represented in a
form from which one can extract whether or not m is a constructor, and that the declared parameters
are represented in a form from which one can extract information such as type information and
non_null information.

 Combining the requires pragmas of the method declaration of m or of a method that m overrides.
 Combining the modifies and also_modifies pragmas of the method declaration of m and of the

methods that m overrides.
 Combining the ensures and also_ensures pragmas of the method declaration of m and of the methods

that m overrides.
 Replacing occurrences of the parameter names in the specifications combined from overridden

methods with the corresponding parameter names of the overriding method.

Note that all expressions in the requires, modifies, and ensures clauses of the declaration returned by
GetCombinedMethodDecl are specification expressions, not guarded command expressions.

Function FilterMethodDecl prunes away parts of the method declaration that mention variables that are not
in scope.  In particular, FilterMethodDecl is responsible for:

 Filtering the modifies list, removing designators that mention variables not in scope.
This is unsound, but seems necessary in the absence of abstraction in the annotation language.

 Removing postconditions that mention variables not in scope.
This is sound provided that the scope of each implementation gives rise to no pruning.  The ESC/Java front end produces a
syntactic warning if a programmer mentions a private variable in the specification of a non-private, non-final method (or
override) in a non-final class.  All other cases are sound.

28



Note that non-public classes mentioned as types of parameters, or as exceptions in the throws set, of a public method are not
filtered out, despite the fact that a public caller do not have access to these classes.  Courtesy of Java, thank you.

Function TrMethodDecl translates a (combined) method declaration into a method specification (see
section 2.1).  Given a method declaration, TrMethodDecl is responsible for:

 Generating checked preconditions from non_null parameter annotations.
 Translating requires clauses into checked preconditions. 
 Generating checked preconditions for synchronized methods.
 Translating the modifies clause into a list of target designators, and adding alloc to this list.  (This

translation includes changing the specification designator E.g into just g, when g is a static field.  Note
that in the annotated Java AST, the name g has already been disambiguated, so E is not needed for the
disambiguation).

In the presence of data groups, TrMethodDecl would be a nice place to compute downward closures.

 Computing a whole-targets map from the target designators.
 Translating ensures clauses into checked postconditions.
 Generating free preconditions from the types of the parameters, stating the type correctness of the

parameters. 
 Generating a free postcondition from the result type, stating the type correctness of the result.
 Generating a checked postcondition from the throws set, stating which exceptions, if any, are

acceptable outcomes of the method. 
 Generating a free postcondition from the throws set, stating the type correctness of any thrown

exception.
 Generating free postconditions from the whole targets, stating their type correctness.
 Generating free postconditions from non_null annotations of the whole targets.

ExtendSpecForCall and ExtendSpecForBody extend what TrMethodDecl produces to take into account
object invariants.  This is done differently for callers and callees, so there are two functions.  Function
ExtendSpecForCall is responsible for:

 Generating checked preconditions from heuristically chosen object invariants and static invariants.
 Generating postconditions from the whole targets and from the object invariants and static invariants in

scope, stating that the call does not invalidate any of the invariants.

and function ExtendSpecForBody is responsible for:

 Generating preconditions from the object invariants and static invariants in scope.
 Generating checked postconditions from whole targets, syntactic targets, object invariants, and static

invariants, stating that the invariants are maintained.

7.0 GetCombinedMethodDecl
This section describes, for a given method name m, the various components of the result of
GetCombinedMethodDecl[[ m ]].

7.0.0 Signature

If m is a static method declared with parameters p1 … pn and result type T (possibly void) and throws set
{X1 … Xx}, or if m is a constructor of a class T with declared parameters p1 … pn and throws set {X1 …
Xx}, then GetCombinedMethodDecl[[ m ]] returns the signature

T m(p1 … pn) throws {X1 … Xx}

If m is an instance method declared with parameters p1 … pn and result type T (possibly void) and throws
set {X1 … Xx}, then GetCombinedMethodDecl[[ m ]] returns the signature
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T m(this p1 … pn) throws {X1 … Xx}

Note that the variables p1 … pn in these cases above have been unique-ified by the parser, which creates a
distinct AST node for each variable, field, or parameter declaration.  In particular, the declared parameters
of a method are distinct from the declared parameters of any method that it overrides, even if the same
textual names are used.

We define the reference declaration of a method m as follows:  If m is not an override, the reference
declaration of m is the declaration of m; if m overrides a method m´ in a superclass, the reference
declaration of m is the reference declaration of m´.  The reference declaration of a constructor is the
constructor itself; constructors cannot be overridden, since the constructor name declared must be the name
of the class in which it occurs [JLS, 8.6].

In the signatures described above, a parameter is considered to be declared non_null if the reference
declaration of m declared the corresponding parameter as non_null.  Since the ESC/Java annotation
language allows the non_null pragma to be used only for the parameters of reference declarations, the only
way a parameter of an overriding method can be non_null is by inheritance of the non_null attribute as
just described.

For generating location information in verification conditions, we need a mechanism by which given a parameter, one can
extract the location of any inherited non_null pragma.

For use in the rest of this section, we now define a function that returns a substitution map to the parameter
names of a method m from the parameter names of the methods that m overrides.  For any method or
constructor m:

ParameterMappings[[ m ]] ==
  #if (m is a reference declaration)
    { }
  #elsif (m directly overrides a method m´)
    #let p1 … pn be the declared parameters of m in
      ParmeterMappingsAux[[ m´, p1 … pn ]]
    #end
  #end

where

ParmeterMappingsAux[[ m, p1 … pn ]] ==
  #let q1 … qn be the declared parameters of m in
    #if (m is a reference declaration )
      {q1  p1, …, qn  pn}
    #elsif (m directly overrides a method m´)
      {q1  p1, …, qn  pn}  ParmeterMappingsAux[[ m´, p1 … pn ]]
    #end
  #end

In the rest of this section, let pmap denote ParameterMappings[[ m ]].

7.0.1 Combining requires clauses

Suppose the reference declaration of m is declared with the requires pragmas:

    requires P1
    …
    requires Pk

We should state the restriction that all variables mentioned in a requires pragma must be as visible as the method it specifies.
Furthermore, if m is a constructor, then its requires pragmas are not allowed to mention this, either implicitly or explicitly.

Then, GetCombinedMethodDecl[[ m ]] includes the following requires clause:
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requires pmap[[ P1 ]]
…
requires pmap[[ Pk ]]

7.0.2 Combining modifies lists

Suppose

    modifies w1 … w.. 
    …
    modifies w.. … w..
    also_modifies w.. … w..
    …
    also_modifies w.. … wu

are the modifies and also_modifies pragmas of m and the methods it transitively overrides.  (Note that a
constructor is never annotated with an also_modifies pragma, because a constructor cannot be overridden.)
GetCombinedMethodDecl[[ m ]] then includes

modifies pmap[[ w1 ]] … pmap[[ wu ]]

7.0.3 Combining ensures clauses

Suppose

    ensures Q1
    …
    ensures Q..
    also_ensures Q..
    …
    also_ensures Qh

are the ensures and also_ensures pragmas of m and the methods it transitively overrides.  (Note that a
constructor is never annotated with an also_ensures pragma, because a constructor cannot be overridden.)
GetCombinedMethodDecl[[ m ]] then includes

ensures pmap[[ Q1 ]]
…
ensures pmap[[ Qh ]]

7.1 FilterMethodDecl
Given a method declaration decl of the form

method T m(p1 … pn) throws {X1 … Xx}
requires P1 … requires Pk
modifies w1 … wu
ensures Q1 … ensures Qh

and a scope Sc, we define:

FilterMethodDecl[[ decl, Sc ]] ==
method T m(p1 … pn) throws {X1 … Xx}
requires P1 … requires Pk
modifies

  #for w in w1 … wu do
    #if (all variables in w are visible in Sc)

w
    #end
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  #end
  #for Q in Q1 … Qh do
    #if (all variables in Q are visible in Sc)

ensures Q
    #end
  #end

Note that for a static field g, a specification expression E.g would always evaluate to the same value as g.  Function
FilterMethodDecl, as defined here, filters out specification designators and postconditions containing expressions of the form E.g
whenever E contains some variable not in scope, even if g is a static field that is in scope.  An alternative design would be to
transform E.g to g before filtering.  In the current design, the translation of E.g into g occurs in TrMethodDecl.

7.2  TrMethodDecl
This section describes the various components of the result of TrMethodDecl for a given method
declaration

method T m(p1 … pn) throws {X1 … Xx}
requires P1 … requires Pk
modifies w1 … wu
ensures Q1 … ensures Qh

The signature returned by TrMethodDecl is the same as the one given.

7.2.0 Preconditions

We now describe the list of precondition clauses that the TrMethodDecl function returns.

TrMethodDecl[[ m ]] includes

  #for p in p1 … pn do
    #if (p is this) 
      #let U be the class that declares m in

precondition Free :  is(this, U) && allocTime(this) < alloc
precondition NullPointerException :  this != null

      #end
    #else
      #let U be the type of p in

precondition Free :  is(p, U)
        #if (U is a reference type)

precondition Free :  allocTime(p) < alloc
          #if (p is declared as non_null)

Recall that p is considered to be declared as non_null if the corresponding parameter in the reference declaration of m is declared
as non_null.

precondition NonNullViolation :  p != null
          #end
        #end
      #end
    #end
  #end

TrMethodDecl[[ m ]] also includes

precondition PreconditionViolation :  TrSpecExpr[[ P1 ]]
…
precondition PreconditionViolation :  TrSpecExpr[[ Ph ]]

Finally, if m is a synchronized instance method, then TrMethodDecl[[ m ]] includes

precondition LockingOrderViolation :  mutex$atmost(max(LS), this) || LS[this]
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We could introduce an annotation or command-line switch to drop the second disjunct, thus disallowing reentrant locking.  For
now, to forbid reentrancy into a synchronized method, the programmer must supply an explicit requires clause.

and if m is a synchronized static method of a class U, then TrMethodDecl[[ m ]] includes

precondition LockingOrderViolation :  mutex$atmost(max(LS), U) || LS[U]

In the second case, U is the class object [JLS, 17.13 and 20.3].
Currently, the annotation language does not let a user mention U as an argument to <, <=, or LS[ ], so there is no way to
discharge proof obligations relating to the position of class objects in the locking order.

7.2.1 Targets

We now describe the targets and whole-targets clauses that the TrMethodDecl function returns.

TrMethodDecl[[ m ]] includes

targets BasicTargets[[ w1 … wu ]]

where function BasicTargets is defined as:

BasicTargets[[ w1 … wu ]] ==
  TrSpecExpr[[ w1 ]] … TrSpecExpr[[ wu ]] alloc

Corresponding to the designator targets, TrMethodDecl[[ m ]] also includes the following whole targets
map:

whole-targets MakeSubst[[ ShaveAll[[ BasicTargets[[ w1 … wu ]] ]], pre ]]
We assume that MakeSubst creates AST nodes for the new names.

where ShaveAll is defined to be a duplicate-free list of variable names, as follows:

ShaveAll[[ D1 … Dd ]] ==
  #for D in D1 … Dd do
    Shave[[ D ]]
  #end

but with duplicates removed, and Shave is defined as follows: for any variable v and expressions E0 and
E1,

 Shave[[ v ]] == v
 Shave[[ v[E0] ]] == v
 Shave[[ v[E0][E1] ]] == v

7.2.2 Postconditions

We now describe the list of postcondition clauses that the TrMethodDecl function returns.  Throughout
this section, we let wt denote the map created for the whole-targets clause as described above.

Every method and constructor body is allowed to allocate new objects, and hence may advance the current
allocation time.  Thus, TrMethodDecl[[ m ]] includes

postcondition Free :  wt[[ alloc ]] < alloc
Note that if our translation were to assume free postconditions at the end of a body, as a possible aid in discharging the checked
postconditions, the free postcondition described here may provide more aid than warranted.  The problem is that the body might
do no allocations, in which case wt[[ alloc ]] == alloc at the end of the body.  Were this to become an issue, we could change the
< in this free postcondition to an <=.  For now, we’re leaving it as <, because we currently don’t assume free postconditions at the
end of the body and we don’t know if using <= would give rise to case splits in reasoning about calls.

This postcondition is free, because the programming language offers no way to decrease the allocation
time.
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If m is a constructor, then TrMethodDecl[[ m ]] includes

postcondition Free :  RES != null && wt[[ alloc ]] < allocTime(RES)

If T is not void, then TrMethodDecl[[ m ]] includes

postcondition Free :  TypeCorrectAs[[ RES, T ]]
Note that no antecedent EC == ec$return is needed, because only if the call returns normally does the caller actually use RES.

TrMethodDecl[[ m ]] also includes

postcondition Free :  EC == ec$throw ==>
                                    XRES != null && typeof(XRES) <: Throwable && allocTime(XRES) < alloc
postcondition UnexpectedException :
                        EC == ec$return ||
                        (EC == ec$throw && (typeof(XRES) <: X1 || … || typeof(XRES) <: Xx)) 

If the throws set is empty, then this checked postcondition simplifies to EC == ec$return.

Finally, TrMethodDecl[[ m ]] includes

  #for Q in Q1 .. Qh do
postcondition PostconditionViolation :  EC == ec$return ==> TrSpecExpr[[ Q, {}, wt ]]

If the throws set is empty, then the antecedent EC == ec$return can be dropped.
  #end

7.3 ExtendSpecForCall
This section describes, for a given method specification spec of the form

spec T m(p1 … pn) throws {X1 … Xx}
precondition P1 … precondition Pj
targets D1 … Dk
whole-targets wt
postcondition Q1 … postcondition Qm

and a scope Sc, the various components of the result of ExtendSpecForCall[[ spec, Sc ]].  Function
ExtendSpecForCall returns a method specification like spec but extended with additional precondition
and postcondition clauses.  These conditions arise from heuristically chosen object invariants and static
invariants.

7.3.0 Adding preconditions

We now describe the list of additional precondition clauses that ExtendSpecForCall returns.

We start with a couple of definitions.  An invariant J declared in a class T is an object invariant of T if J
mentions this, and is a static invariant of T otherwise.  An invariant is called Sc-visible if it is in scope in
Sc.

These definitions would be better placed elsewhere, perhaps near the (to be written) AST grammar of declarations.

For every static invariant J in scope Sc, ExtendSpecForCall[[ spec, Sc ]] includes

precondition StaticInvariantViolation :  TrSpecExpr[[ J ]]

For each static field g in scope Sc, if the static type of g is a class U, then ExtendSpecForCall[[ spec,
Sc ]] includes

precondition ObjectInvariantViolation :  g == null || TrSpecExpr[[ J, {this  g}, {} ]]
The first disjunct can be suppressed if g is declared as non_null.
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for every Sc-visible object invariant J of any superclass of U.

For each parameter p in the signature of spec, if the static type of p is a class U (or if p is this and m is a
method of a class U), then ExtendSpecForCall[[ spec, Sc ]] includes

precondition ObjectInvariantViolation :  p == null || TrSpecExpr[[ J, {this  p}, {} ]]
The first disjunct can be suppressed if p is this or is declared as non_null.

for every Sc-visible object invariant J of any superclass of U.

7.3.1 Adding postconditions

We now describe the list of additional postcondition clauses that ExtendSpecForCall returns.
The postconditions generated here are used only in the desugaring of calls.  In this context, the predicates of all postconditions are
assumed and the error names are ignored.  Since the error names are ignored, we have written them as Free.

For every Sc-visible static invariant J, ExtendSpecForCall[[ spec, Sc ]] includes

postcondition Free :  TrSpecExpr[[ J ]]

As an important optimization, this postcondition clause is suppressed for J if the free variables of J are
disjoint from the domain of wt (in which case this postcondition is a tautology).

For every Sc-visible object invariant J of any class U, ExtendSpecForCall[[ spec, Sc ]] includes

#if (m is a constructor, and U is a proper subtype of T)
postcondition Free :  (ALL s :: TypeCorrectAs[[ s, U ]] && s != null && s != this &&
                                                    TrSpecExpr[[ J, {this  s}  wt, {} ]]
                                                    ==> TrSpecExpr[[ J, {this  s}, {} ]] )

#else
postcondition Free :  (ALL s :: TypeCorrectAs[[ s, U ]] && s != null &&
                                                    TrSpecExpr[[ J, {this  s}  wt, {} ]]
                                                    ==> TrSpecExpr[[ J, {this  s}, {} ]] )

#end

where s is a fresh name.  As an important optimization, this postcondition clause is suppressed for J if the
free variables of J are disjoint from the domain of wt.

What should be the trigger for these quantifications?

7.4 ExtendSpecForBody
This section describes, for a given call specification spec of the form

spec T m(p1 … pn) throws {X1 … Xx}
precondition P1 … precondition Pj
targets D1 … Dk
whole-targets wt
postcondition Q1 … postcondition Qm

and a scope Sc and a list of variables (syntactic targets) SynTargs, the various components of the result of 
ExtendSpecForBody[[ spec, Sc, SynTargs ]].  Function ExtendSpecForBody returns a method
specification like spec but extended with additional postcondition clauses.  These postconditions arise
from object invariants and static invariants.

7.4.0 Adding preconditions

The specification returned by ExtendSpecForBody includes the following precondition clauses in addition
to the precondition clauses in spec.

The preconditions generated here are used only in generating the verification for a body.  In this context, the predicates of all
preconditions are assumed and the error names are ignored.  Since the error names are ignored, we have written them as Free.
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For every Sc-visible static invariant J, ExtendSpecForBody[[ spec, Sc, SynTargs ]] includes

precondition Free :  TrSpecExpr[[ J ]]

For every Sc-visible object invariant J of any class U, ExtendSpecForBody[[ spec, Sc, SynTargs ]]
includes

precondition Free :  (ALL s :: TypeCorrectAs[[ s, U ]] && s != null
                                                   ==> TrSpecExpr[[ J, {this  s}, {} ]] ) 

7.4.1 Adding postconditions

The specification returned by ExtendSpecForBody includes the following postcondition clauses in addition
to the postcondition clauses in spec.

For every Sc-visible static invariant J, ExtendSpecForBody[[ spec, Sc, SynTargs ]] includes

postcondition StaticInvariantViolation : TrSpecExpr[[ J ]] 

As an important optimization, this postcondition clause is suppressed for J if the free variables of J are
disjoint from SynTargs (in which case the condition follows immediately from the assumption, placed in
the scope-specific background predicate, that all object invariants hold initially).

For every Sc-visible object invariant J of any class U, ExtendSpecForCall[[ spec, Sc, SynTargs ]]
includes

#if (m is a constructor, and U is a proper subtype of T)
postcondition ObjectInvariantViolation :
                        (ALL s :: TypeCorrectAs[[ s, U ]] && s != null && s != this
                                        ==> TrSpecExpr[[ J, {this  s}, {} ]] )

#else
postcondition ObjectInvariantViolation :
                        (ALL s :: TypeCorrectAs[[ s, U ]] && s != null &&
                                        ==> TrSpecExpr[[ J, {this  s}, {} ]] )

#end

where s is a fresh name.  As an important optimization, this postcondition clause is suppressed for J if the
free variables of J are disjoint from SynTargs.

What should be the trigger for these quantifications?

8 Verification conditions
A verification condition consists of a set of background axioms (described in ESCJ 8, The logic of
ESC/Java), a class-specific (that is, scope-specific) background predicate, and method-specific predicate.

8.0 Scope-specific background predicate
In this section, we define two functions, PreMap and InitialState.

Given a scope Sc, PreMap[[ Sc ]] returns a map from every field in Sc, and from elems and from alloc, to
corresponding variables adorned with @pre.

As a side effect, PreMap creates AST nodes for these adorned variables.

PreMap[[ Sc ]] ==
  #for every static field g visible in Sc do
    {g  g@pre} 
  #end
  #for every instance variable f visible in Sc do

36



    {f  f@pre} 
  #end
  {elems  elems@pre} 
  {alloc  alloc@pre}

The scope-specific background predicate is generated by the function InitialState[[ Sc, premap ]].  It is
defined as follows, for any scope Sc and map from variables to variables premap,

InitialState[[ Sc, premap ]] ==
  #for every static field g visible in Sc do
    premap[[ g ]] == g &&
    TypeCorrect[[ g ]] &&
  #end

  #for every instance variable f of type T visible in Sc do
    premap[[ f ]] == f &&
    FieldTypeCorrect[[ f ]] &&
  #end

  premap[[ elems ]] == elems &&
  ElemsTypeCorrect[[ elems ]] &&

  LS == asLockSet(LS) &&

  premap[[ alloc ]] == alloc

8.1 Methods and constructors
This section describes the verification condition for a method or constructor m with a Java body S in scope
Sc.

Let premap denote PreMap[[ Sc ]], let body denote TrBody[[ m, S, premap ]] (defined below), let
SynTargs denote NTargets[[ body, {} ]], and let spec denote the method specification

spec T m(p1 … pn) throws {X1 … Xx}
precondition P1 … precondition Pj
targets D1 … Dk
whole-targets wt
postcondition Q1 … postcondition Qm

returned by GetSpecForBody[[ m, Sc, SynTargs ]].  Then, the verification condition for m declared at
location L in scope Sc with body S is:

    BackgroundAxioms[[ Sc ]] &&
    InitialState[[ Sc, premap ]] &&
    P1 && … && Pj 
  ==>
    ejp[[ body ;
             check L, Q1 ; … ; check L, Qm ;
             CheckModifiesConstraints[[ spec, Sc, SynTargs, premap ]]
          ,  true, true ]]

Since PreMap has side effects (it allocates AST nodes for the variables in its image of the map it returns), the implementation
must call PreMap at most once per verification condition (that is, it must use the same premap in the calls to InitialState and
CheckModifiesConstraints above).  The implementation will benefit from calling PreMap (and InitialState) only once per scope,
that is, the results of PreMap and InitialState can be shared among the methods in one class.

We now define TrBody and CheckModifiesConstraints.
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Function TrBody translates the Java body S into a guarded command.

TrBody[[ m, S, premap ]] ==
  #var V = {}, CS in
    #if (m is a method, not a constructor)
      #if (m is a synchronized instance method)
        #CS = TrSynchronizedBody[[ this, S, V ]]
      #elsif (m is a synchronized static method of a class U)
        #CS = TrSynchronizedBody[[ U, S, V ]]
      #else
        #CS = TrStmt[[ S, V ]]
      #end

Note that constructors cannot be synchronized [JLS, 8.6.3].
    #elsif (m is a constructor of a class T, and
               S has the form construct m´ (…) ; S´ (where S´ may be the empty statement) )
      #if (m´ is a constructor of class T)
        // this is a call to a sibling constructor
        #CS = ( TrStmt[[ construct m´ (E1 … En), V ]] ;
                     assume typeof(this) <: T ;
                     TrStmt[[ S´, V ]] )
      #else
        // this is a call to a superclass constructor
        #CS = ( TrStmt[[ construct m´ (E1 … En), V ]] ;
                     assume typeof(this) <: T ;
                     InstanceInitializers[[ T, V ]] ;
                     TrStmt[[ S´, V ]] )
      #end
    #else
      // this is a constructor of class Object that does not call any sibling constructor
      #CS = ( modify this ; modify alloc ;
                   assume premap[[ alloc ]] < alloc ;
                   assume premap[[ alloc ]] < allocTime(this) && allocTime(this) < alloc ; 
                   assume this != null && typeof(this) <: Object ;
                   InstanceInitializers[[ Object, V ]] ;
                   TrStmt[[ S, V ]] )
    #end

    var p1@pre … pn@pre in
Note, the parameters p1 … pn are not in the domain of premap.  The AST nodes for these @pre variables are thus allocated
here.

      p1@pre = p1 ; … ; pn@pre = pn ;
      var V in
        ( CS ; EC = ec$return
          #if (m is a constructor)
            ; RES = this
          #end
        ) ! skip
      end ;
      p1 = p1@pre ; … ; pn = pn@pre
    end
  #end

where for any class type T,

InstanceInitializers[[ T, V ]] ==
  #for every instance variable f of type U declared in class T in order do
    #if (T is boolean)
      assume f[this] != bool$true ;
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    #elsif (T is an integral type)
      assume f[this] == 0 ;
    #elsif (T is a reference type)
      assume f[this] == null ;
    #elsif (T is a floating point type)
      assume f[this] == cast(0, T) ;
    #end
  #end
  #for every instance variable f with an initializer E declared in class T in order do
    #var e in
      TrExpr[[ E, {}, V, e ]] ;
      WriteCheck[[ f[this], e ]] ;
      f[this] = e
    #end
  #end

Function CheckModifiesConstraints takes a list of designator targets, a whole-targets map, and a list of
syntactic targets, and produces a sequence of check commands.  These checks enforce that the body meets
the modifies list of the specification.  Let spec be a method specification of the form shown above.  Then,
for a scope Sc and a list of variables (syntactic targets) SynTargs:

CheckModifiesConstraints[[ spec, Sc, SynTargs, premap ]] ==
  #for every static field g in SynTargs and not in Domain[[ wt ]] do

check ModifiesViolation :  premap[[ g ]] == g
  #end
  #for every instance variable f in SynTargs do
    #let U be the class that declares f in
      #let q1 … qs be the subset of p1 … pn whose types are subtypes of U in
        #let g1 … gr be the static fields in Sc whose types are are subtypes U in

check ModifiesViolation :
           (ALL s :: s != null && (s == q1 || … || s == qs || s == g1 || … || s == gr)
                           ==>
                           premap[[ f ]] [s] == f[s] || IsModPoint[[s, f, D1 … Dk]]) 

        #end
      #end
    #end
  #end
  #if (elems is in SynTargs)
    #let q1 … qs be the subset of p1 … pn whose types are array types in
      #let g1 … gr be the static fields in Sc whose types are array types in

check ModifiesViolation :
           (ALL a :: a != null && (a == q1 || … || a == qs || a == g1 || … || a == gr)
                           ==>
                           (ALL i :: premap[[ elems ]] [a][i] == elems[a][i]) ||
                           IsArrayModPoint[[ a, D1 … Dk ]] )
check ModifiesViolation :
           (ALL a, i :: a != null && (a == q1 || … || a == qs || a == g1 || … || a == gr)
                              ==>
                              premap[[ elems ]] [a][i] == elems[a][i] || IsIndexModPoint[[ a, i, D1 … Dk ]] )

Perhaps we also want to require modifications of p.arr[i], where p is a parameter, arr is a field of p, and i is some index into
p.arr, to be explicitly mentioned in a modifies clause.  If so, we should add some more disjuncts of the form a == p.arr.

      #end
    #end
  #end

We now define IsModPoint, IsArrayModPoint, and IsIndexModPoint.
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For any name s, instance variable name f, and specification designator list D1 … Dk, function IsModPoint
produces a predicate stating that the modifies list D1 … Dk allows f to be modified at s:

IsModPoint[[ s, f, D1 … Dk ]] ==
  #if (k == 0)
    false
  #elsif (D1 has the form f[E] for some E)
    s == E || IsModPoint[[ s, f, D2 … Dk ]]
  #else
    IsModPoint[[ s, f, D2 … Dk ]]
  #end

For any names a and i, and specification designator list D1 … Dk, function IsArrayModPoint produces a
predicate stating that the modifies list D1 … Dk allows elems to be modified at a, and function
IsIndexModPoint produces a predicate stating that the modifies list D1 … Dk allows elems[a] to be
modified at i:

IsArrayModPoint[[ a, D1 … Dk ]] ==
  #if (k == 0)
    false
  #elsif (D1 has the form elems[E0][E1] for some E0 and E1)
    (a == E0) || IsArrayModPoint[[ a, D2 … Dk ]]
  #elsif (D1 has the form elems[E] for some E)
    (a == E) || IsArrayModPoint[[ a, D2 … Dk ]]
  #else
    IsArrayModPoint[[ a, D2 … Dk ]]
  #end

IsIndexModPoint[[ a, i, D1 … Dk ]] ==
  #if (k == 0)
    false
  #elsif (D1 has the form elems[E0][E1] for some E0 and E1)
    (a == E0 && i == E1) || IsIndexModPoint[[ a, i, D2 … Dk ]]
  #elsif (D1 has the form elems[E] for some E)
    (a == E) || IsIndexModPoint[[ a, i, D2 … Dk ]]
  #else
    IsIndexModPoint[[ a, i, D2 … Dk ]]
  #end

8.2 Static bodies
TBW.
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