
Extended Static Checking for Java
 ESC/Java finds common errors in Java programs:

null dereferences, array index bounds errors,
type cast errors, race conditions, violations of
annotations (e.g., preconditions, object invariants),
etc.

 Annotation language is a subset of JML
 Powered by program verification technology
 Has been applied to 10,000’s of lines of Java

and has found real errors

http://research.compaq.com/SRC/esc/

A simple example input: Output:
1: class Bag {
2: int[] a; //@ invariant a != null;
3: int n; //@ invariant 0 <= n && n <= a.length;

 …
215: int min() {
216: int m = Integer.MAX_VALUE;
217: for (int i = 0; i <= n; i++) {
218: if (a[i] < m) {
219: m = a[i];
220: } }
221: return m;
222: }
223: }

Bag.java:218: Warning: Array
index possibly too large

 if (a[i] < m) {
 ^
Execution trace information:
 Reached top of loop after 0

iterations, line 217, col 4.

ESC/Java annotations are
given in Java comments

This error may lead to an
array index bounds error
here, as detected by ESC/Java

Annotated Java program

Translator

Verification conditions

Automatic theorem prover

Counterexamples

Post-processor

Warning messages

ESC/Java tool architecture
The translator “understands” the
semantics of Java.

A verification condition is a logical
formula that, ideally, is valid if and
only if the program is free of the
kinds of error under consideration.

The automatic theorem prover is
invisible to users of ESC/Java.

Any counterexample that the
theorem prover finds to a verification
condition is turned into a precise
warning message that ESC/Java
outputs to the user.

