
IDebug:

An Advanced Debugging Framework for Java∗

Joseph R. Kiniry
Department of Computer Science,
California Institute of Technology,

Mailstop 256-80,
Pasadena, CA 91125

September, 1998

Abstract

The IDebug debugging framework is an advanced debugging frame-
work for Java. This framework provides the standard core debugging and
specification constructs such as assertions, debug levels and categories,
stack traces, and specialized exceptions. Debugging functionality can be
fine-tuned to a per-thread and/or a per-class basis, debugging contexts can
be stored to and recovered from persistent storage, and several aspects of
the debugging run-time are configurable at the meta-level. Additionally,
the framework is designed for extensibility. Planned improvements include
support for debugging distributed object systems via currying call stacks
across virtual machine contexts and debug information logging with a va-
riety of networking media including unicast, multicast, RMI, distributed
events, and JavaSpaces. Finally, we are adding support for debugging
mobile agent systems by providing mobile debug logs.

1 Introduction

Programming technologies have evolved greatly over the years. New program-
ming models have emerged, new languages have gained popularity, new tools
have been adopted, and yet several core debugging constructs have not changed.
We believe that the two primary constructs for general debugging are the exe-
cution trace and the assertion.

1.1 Object-Oriented Debugging

Debugging object-oriented programs is not the same as debugging procedural
ones. Because most object models enforce modularity and encapsulation, one
must test both the implementation and the interface of a class.
∗This document describes IDebug version 1.0

1



A specification of an interface is called a Contract [1, 2, 3, 4]. A class’s
contract specifies the externally visible behavior that a class guarantees.

Contracts are typically specified via three constructs: preconditions, post-
conditions, and invariants. Using these three constructs, the safety properties
of a class can be completely specified.

1.2 Debugging in Java

Surprisingly, given its popularity, the Java programming language provides very
few built-in constructs for debugging classes.

Typically, a Java programmer relies upon language features and development
tools for debugging. Java provides array bounds checking, static type checking,
variable initialization testing, and exceptions to assist in code debugging. While
programming environments provide sophisticated source-code debuggers, most
developers seem fixated on using primitive println’s to debug their code.

Java is missing several traditional core debugging constructs, the most crit-
ical of which is assertions. Assertions are program statements of the form “at
this point in execution the following must be true”. They are used to specify
predicates that must remain inviolate for a program to exhibit correct behavior.
Typically, if an assertion is violated, a program is aborted. In object-oriented
systems we often have options other than halting the program execution (e.g.
throwing an exception).

1.3 Debugging Frameworks

A framework is a collection of classes that provides a unified model and interface
to a specific piece of functionality. A framework in Java is typically implemented
as a collection of classes organized into a package.

1.4 IDebug: A Debugging Framework

The IDebug debugging framework is implemented as a set of Java Beans (Java
components) collected into the package IDebug. These classes can be used either
(a) as “normal” classes with standard manual debugging techniques, or (b) as
components within visual Java Bean programming tools.

This package provides many standard core debugging and specification con-
structs, such as the previously discussed assertions, debug levels and categories,
call stack, and specialized exceptions. Debug levels permit a developer to assign
a “depth” to debug statements. This creates a lattice of information that can
be pruned at runtime according to the demands of the current execution. Call
stack introspection is provided as part of the Java language specification. The
IDebug framework uses the call stack to support a runtime user-configurable
filter for debug messages based upon the current execution context of a thread.
Finally, a set of specialized exceptions are provided for fine-tuning the debug
process.

2



Additionally, the framework supports extensions for debugging distributed
systems. One problem typical of debugging distributed systems is a loss of
context when communication between two non-local entities takes place. E.g.
When object A invokes a method m on object B, the thread within m does not
have access to the call stack from the calling thread in A. Thus, the IDebug
package supports what we call call stack currying. Information such as source
object identity, calling thread call stack, and more is available to the debugging
framework on both sides of a communication. Such information can be curried
across arbitrary communication mediums (sockets, RMI, etc.).

The IDebug package is also being extended to support the debugging of
mobile agent systems. Mobile agent architectures can support disconnected
computing. For example, an object O can migrate from machine A to machine
B, which might then becomes disconnected from the network (i.e. absolutely no
communication can take place between B and A). Since B cannot communicate
with A, and printing debugging information on B’s display might not be useful
or possible, B must log debugging information for later inspection. To support
this functionality, the IDebug package will provide serializable debug logs. These
logs can be carried around by a mobile object and inspected at a later time by
the object’s owner or developer.

The IDebug package is very configurable. Debugging functionality can be
fine-tuned on a per-thread basis. Each thread can have its own debugging
context. The context specifies the classes of interest to that particular thread.
I.e. If a thread T specifies that it is interested in a class C but not a second
class D, then debugging statements in C will be considered when T is inside of
C, but debugging statements in D will be ignored at all times. These debugging
contexts can be stored to and recovered from persistent storage. Thus, “named”
special-purpose contexts can be created for reuse across a development team.

2 Requirements

In this section we will briefly present our project analysis including our project
concept dictionary, a review of our requirements for the debugging package, and
our goals.

2.1 Project Dictionaries

At the beginning of the project analysis phase, a dictionary of concepts was de-
veloped so that all designers, developers, and users would have a clear, common
language. The dictionary of terms is included in Table 1 as well as in the design
diagrams directory of the framework deliverable.

Next, we will consider the core, application, and innovative requirements we
agreed upon before designing the IDebug framework.

3



Project Dictionary
Assertion An assertion is a predicate which states a logical sentence which

evaluates to true or false. The assertion is typically embedded in
program code. An error is indicated if, during program execution,
the assertion evaluates to false. There are three main types of as-
sertions (see below): preconditions, postconditions, and invariants.

Debug Context A debug context is a debugging frame of reference. More specifi-
cally, each thread of control within a component can have an in-
dependent debug context. This context describes what types of
debugging information are relevant to that specific thread.

Debug Semantics Debug semantics are the runtime behavior of the debug package,
as exhibited by its reactions to exceptions, the language and text
of its output messages, etc.

Invariant A condition that must be true at all stable points in program exe-
cution. There are several types of invariants. A class invariant is
an assertion describing a property which holds for all instances of a
class and, potentially, for all static calls to the class. A loop invari-
ant for a given loop is an assertion that is true at the beginning of
the loop and after each execution of the loop body.

Output Interface The debug package’s output interface is any legitimate output
medium. Example output interfaces include the system console,
a shell window, a GUI, etc.

Postcondition A condition that must be true at the end of a section of code.
Precondition A condition that must be true at the beginning of a section of code.
Predicate Formally, a predicate is something that is affirmed or denied of the

subject in a proposition in logic. In other words, it is a logical
sentence that evaluates to a boolean within specific contexts.

Variant A variant is a predicate that describes how state changes. A loop
variant is an assertion that describes how the data in the loop
condition is changed by the loop. Loop variants are used to check
forward progress in the execution of loops (i.e. avoid infinite loops
and other incorrect loop behavior).

Table 1: Project Dictionary

4



2.2 Core Requirements

We require that the IDebug framework support the following requirements. IDe-
bug must, at the minimum:

1. Provide an assertion mechanism. Assertions are the core construct of any
debugging system. Assertions can be intelligently inserted in program
code and, if an assertion is violated, an error message is logged and a
AssertionFailedException is thrown and the thread, and possibly the
program halt.

2. Support the output of debugging messages. Printing miscellaneous debug-
ging messages, perhaps outside the context of the primary interface of a
component, is essential in a good debugging suite.

3. Support multiple debugging levels. Different types of errors, messages, and
situations require different levels of response. An adequate debugging
framework should not only support a set of debugging levels, but the
set should be ordered so that user or developer-tunable filtering of debug
output can take place1.

4. Complement the standard Java exception mechanism. Since this is a de-
bugging framework built for the Java language, it should work with, not
against, the built in exception mechanisms. In particular, prudent use
of exception types (Runtime verses Throwable) is necessary so that the
framework is not overly intrusive to the developer2.

5. Work with all development environments. IDebug must work with all
development environments, from the most flashy IDE to the lowly CLI
runtime. This means that IDebug must be implemented as “100% Pure
Java”; no proprietary extensions or native code may be used.

2.3 Application Requirements

Because we build a wide array of Java applications and components, we believe
that IDebug should support debugging all types of Java programs. This means
that the framework must provide debug functionality that complements the
following application types. Each type of application listed below is followed by
a non-unique implication of that particular application assumption.

1. Console-based applications. Sometimes we will want to send messages to
an output stream different from C’s stdout or stderr.

2. Graphical user interface applications. Occasionally, one wants to send
debug messages to independent debugging windows or message sub-frames
within a large application.

1A filtering mechanism could be used instead, though is usually more tedious for the tester.
2I.e. If all exceptions were Runtime exceptions, the developer would have to bracket nearly

all code with try-catch blocks.

5



3. Console-less applications. If there is no output channel, logging debug
messages for later retrieval is an excellent course of action.

4. Independent components (e.g. beans, servlets, doclets, etc.). Independent
components should be able to maintain independent debugging semantics
and contexts. Conversely, sometimes it is useful to have a compositional
application share a debug context among its components.

5. Mobile agent/object applications. If an application has mobile sub-components,
their debug contexts need to be mobile as well, and debugging message
output and/or storage should be location-independent and/or location-
aware.

6. Distributed applications. Distributed applications mean (at least) dis-
tributed control, distributed debugging context, and distributed debug
messaging.

If a debug package were to support all of the above application types, we
would consider it extremely powerful due to its flexibility.

2.4 Innovative Requirements

Finally, we wish to support a set of innovative debugging capabilities. While
most of these goals are independent of the target language, they are facilitated
by many of Java’s more advanced features. The list of innovative requirements
includes:

1. Support categorized debugging. Debugging messages, errors, warnings, etc.
should not only have a value (the debug level), but they should have a
debug category (a classification).

2. Support per-class debugging. A developer should be able to selectively
turn debugging on or off at a per-class level.

3. Have a configurable runtime. We should not force developers to adopt our
debugging semantics. New semantics (debug ranges, base categories, etc.)
should be configurable at runtime.

4. Support multiple output interfaces. All debugging messages need not be
sent to the same output channel. E.g. Consider messages generated by
UNIX’s syslog facility. Some messages are sent to the console, some are
logged in a file, and some are sent directly to the system administrator
via email.

5. Support per-thread debugging. Each thread within a runtime should be
able to construct its own debugging context. More precisely, most of
the above configurable options (debugging categories, classes, semantics,
output interface, and level) should be configurable on a per-thread basis.
Additionally, these options should be changeable at runtime.

6



6. Support persistent debug contexts. Once a debugging context is created,
it should be possible to send it to persistent storage for later access. This
way, debugging contexts can not only be shared across sets of components,
but they can be shared across groups of developers.

If a debug framework were to support all of the above requirements, we
would simply be amazed3.

Now that we have a common vocabulary and understand the problem domain
and the design goals, we’ll consider a design for the debugging framework.

3 Design

We will not discuss the full design of IDebug here due to space considerations.
Interested parties should download and consult the IDebug package or browse
the information online via the IDebug release web page4. Only a few interesting
and/or important design points are discussed below.

3.1 Context Configurability

As mentioned previously, debugging options should be configurable on a per-
thread basis. On further consideration, we decided that two configurable set-
tings should not be switchable at runtime: debug semantics and output inter-
face.

The reason for this decision might not be immediately obvious, but consider
the following two points:

• Debugging output might be queued due to the temporary unavailability
of an output channel or user.

• Source code that uses a debugging package makes explicit assumptions
about the semantics of the package. Meaning, while debugging seman-
tics might be switchable at runtime by the framework, it is not (usually)
switchable at runtime for the application using the framework.

Due to these factors, the configuration of debugging semantics and output
interface is immutable. Meaning, once these options are set for a debugging
context, they cannot be changed.

Note that a new context can be created. All the other flexibility mentioned
in Section 2.4 is fully configurable at runtime on a per-thread basis.

Now, we’ll briefly discuss the implementation and use of the IDebug frame-
work, version 2.0.

3Hint: IDebug supports everything you have read so far.
4http://www.infospheres.caltech.edu/releases/

7



4 Implementation

IDebug is freely available from the KindSoftware’s Open Source web pages5.

4.1 Implementation Size and Performance

Implementation Summary (with test and example code)
Total Number of Packages 2
Total Number of Classes 12
Total Number of KB of Java 97.9KB
(includes code, documentation, and whitespace)
Total Number of KB of classfiles
Independent class files 28.4KB
Jar (compressed) format 11.7KB
Total Number of Lines of Code6 2069
Total Number of Lines of Comments 1380
Comments/Code 67%

Table 2: Implementation Summary

The implementations of both versions of IDebug are summarized in Table 2.

IDebug Performance. We have not yet performed performance tests on the
IDebug package. In general, its performance is entirely based upon the speed
of the Java runtime’s Throwable.printStackTrace() method and Hashtable
and StringBuffer implementations, since these classes are at the core of the
exception and assertion-handling mechanisms in IDebug.

A performance profile test of IDebug could reveal performance weaknesses.
In general, any performance tuning would mean replacing data structures, rathan
than changing core algorithms.

In general, performance is not an issue in debugging complex systems, es-
pecially distributed or object-oriented systems. We make this claim for two
reasons:

First, the debugging phase of an implementation should be part of an ordered
and reasoned test suite, and thus the use of the debugging framework should
also be ordered and have reason. In other words, rarely will it be the case that
all threads within a complex application will have all their debugging options
turned on simultaneously.

Second, we believe that debugging statements should not be written by hand
or statically inserted into program code. Debug code should be “tunable” at
compile time, not just runtime, and thus debug framework performance should
only matter for critical debug paths, of which there should be few.

5http://www.kindsoftware.com/products/opensource/

8



4.2 Framework Extensibility

The IDebug framework is extensible in two dimensions: debug semantics and
output interfaces.

IDebug Framework Semantics. The semantics of the package can be changed
by implementing new versions of DebugConstantsInterface. An example of
such an extension is provided in the form of the FrenchConstantsInterface
class in the IDebug.examples package. This class provides an implementa-
tion of DebugConstantsInterface that differs from the default implementation
(DefaultDebugConstants) in two ways:

1. Debug levels range from 1 to 100 instead of 1 to 10,

2. Default debugging levels have been adjusted for this new granularity of
debug levels, and

3. Default debug messages, categories, and documentation are provided in
French.

IDebug Output Interfaces. New implementations of the DebugOutput in-
terface can be designed to support sending debug messages to alternative output
media/channels. As of version 2.0, the framework comes with two implementa-
tions: ConsoleOutput, which sends messages to the console of a Java runtime,
and WriterOutput, which sends debug messages to a Writer which can be used
as part of a normal java.io compositional data stream.

4.3 Complementary Tools

Static debugging statements clutter source code, increase object code size, and
reduce execution speed. We have developed a application called JPP, the Java
PreProcessor, that solves exactly this problem.

In short, JPP performs transformations of embedded program specification,
in the form of design by contract[5] (DBC) predicates in documentation com-
ments, into IDebug test code at compile time. Future versions of JPP will also
perform code beautification, code standard conformance checking, code metric
analysis, and documentation generation.

5 Conclusion

IDebug is the most advanced debugging framework available today. It is ex-
tremely configurable, supports a wide range of Java application types, and,
because it is an open framework, is extensible by the developer.

9



Future Work. In fact, we encourage developers to extend IDebug. In partic-
ular, we are interested in hearing about (and including) alternative implemen-
tations of the DebugOutput interface and DefaultDebugConstants. We have
come up with the following alternative ideas for output interfaces; perhaps your
application could use one of these or one that we have not thought of:

• DBOutput — used to log debugging messages to a database via standard
JDBC.

• EventSourceOutput — send messages to arbitrary listeners within a Java
virtual machine (perhaps as part of a compositional Java Beans-based
application).

• FrameOutput — to send debugging messages to an arbitrary frame within
a larger GUI.

• LogOutput — to persistently log messages for off-line debugging.

• MessageOutput — send messages via a JMS-conformant messaging infras-
tructure to a/some remote objects.

• RemoteEventSourceOutput — to provide debugging messages as distributed
events (perhaps as part of a Jini[7] application).

• ScrollableWindowOutput — display messages in an independent, scrol-
lable window.

• ServletLogOutput — to persistently log messages via the servlet devel-
opers kit’s debugging interface.

• SpaceOutput — store debugging events in a JavaSpace[6].

Finally, we are investigating integrating IDebug with Dan Zimmerman’s
ÜberNet distributed messaging infrastructure[8]. Our primary goal is to sup-
port the currying of call stacks across execution contexts. This would mean that
assertions and exceptions on remote (receiver) machines would have access to
the call stack of the sending thread.

Thanks. The author would like to thank the Infospheres Group for help with
the initial problem analysis and early IDebug design. In particular, the com-
ments of Mani Chandy, Dan Zimmerman, Wesley Tanaka, and Adam Rifkin
were invaluable. Also, Nelson Minar used the first version of IDebug as part
of his thesis work; his comments were very helpful. Matt Hanna helped review
this technical report. Finally, I’d like to thank Ron Resnick, Mark Baker, Mary
Baxter, and Cici Koenig for their general support and encouragement in all I
do.

10



References

[1] Graham Hamilton, Michael L. Powell, and James G. Mitchell. Subcontract:
A flexible base for distributed programming. In Proceeings of the 14th Sym-
posium on Operating Systems Principles. Sun Microsystems, Inc., December
1993.

[2] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts:
Specifying behavioral compositions in object-oriented systems. In European
Conference on Object-Oriented Programming/ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications, volume 25/10
of ACM SIGPLAN Notices, pages 169–180. ACM SIGPLAN: Programming
Languages, ACM Press and Addison-Wesley Publishing Company, October
1990.

[3] Ian M. Holland. Specifying reusable components using contracts. In ACM
Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications, pages 287–308. ACM SIGPLAN: Programming Languages, ACM
Press and Addison-Wesley Publishing Company, 1992.

[4] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc.,
2nd edition, 1988.

[5] Bertrand Meyer. Advances in Object-Oriented Software Engineering, chapter
Design by Contract. Prentice-Hall, Inc., 1992.

[6] Sun Microsystems, Inc. JavaSpaces Specification. Sun Microsystems, Inc.,
2550 Garcia Ave. Mountain View, CA 94043, revision 1.0 beta edition, July
1998.

[7] Jim Waldo. Jini Architecture Overview. Sun Microsystems, Inc., 2550 Garcia
Ave. Mountain View, CA 94043, 1998.

[8] Daniel M. Zimmerman. ÜberNet: The Infospheres Network Layer User
Guide, version 1.0a1 edition, February 1998.

11


